Tail behaviour and tail dependence of
generalized hyperbolic distributions

Ernst August v. Hammerstein

Abstract Generalized hyperbolic distributions have been well established in finance
during the last two decades. However, their application often is computationally de-
manding because values of their distribution and quantile functions can only be de-
termined by numerically integrating their densities. Moreover, they are, in general,
not stable under convolution which makes the computation of quantiles in factor
models driven by these distributions even more complicated. In the first part of the
present paper, we take a closer look at the tail behaviour of univariate generalized
hyperbolic distributions and their convolutions and provide asymptotic formulas for
the quantile functions that allow for an approximative calculation of quantiles for
very small resp. large probabilities. With help of these results, we then analyze the
dependence structure of multivariate generalized hyperbolic distributions. In partic-
ular, we concentrate on the implied copula and determine its tail dependence coeffi-
cients. Our main result states that the generalized hyperbolic copula can only attain
the two extremal values O or 1 for the latter, that is, it is either tail independent or
completely dependent. We provide necessary conditions for each case to occur as
well as a simpler criterion for tail independence. Possible limit distributions of the
generalized hyperbolic family are also included in our investigations.

1 Introduction

Almost forty years ago, generalized hyperbolic distributions (henceforth GH) have
been introduced in [4] in connection with the modeling of aeolian sand deposits
and dune movements. Eighteen years later, they were introduced in finance by [12]
where the hyperbolic subclass was used as a more realistic model for stock returns.
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The normal inverse Gaussian subclass followed shortly after in [5], and the general
case was then considered in [10], [17], and [16]. Starting from early applications to
stock price modeling and option pricing, GH distributions have been successfully
used in various fields of finance during the last two decades, for example, in interest
rate theory and the pricing of interest rate derivatives (see [18], [13], and [14]),
currency markets ([15]), and portfolio credit risk models ([11]).

There are mainly two reasons for the widespread applicability of GH distribu-
tions: First, they are infinitely divisible and therefore allow to make use of the ex-
tensive theory of Lévy processes in continuous-time models based on them. The
second is their convenient tail behaviour. On the one hand, the tails of the GH prob-
ability densities have considerably more mass than the ones of normal distributions.
This means that, for example, extreme price movements which are observed more
often nowadays are much more likely under the assumption of GH distributed as-
set returns, whereas such events are severely underestimated in models based on
the normal distribution. On the other hand, the GH densities asymptotically still
decay exponentially and therefore possess a moment generating function on some
non-degenerate interval around the origin. This is an inevitable requirement for the
construction of financial models of exponential Lévy type since stock or bond price
models having infinite expectations are obviously not very realistic. Moreover, the
existence of a moment generating function allows (under a mild additional assump-
tion) for an easy way to explicitly determine a risk-neutral measure for derivative
pricing via an Esscher transform.

Despite these advantages, GH distributions are, to some extent, computationally
demanding in practical applications nevertheless because their distribution func-
tions can neither be given in closed form, nor does there exist a well-known and
quickly convergent series expansion for them. Therefore, the values of the distribu-
tion and quantile functions can only be determined by numerically integrating the
corresponding densities. These procedures naturally become less stable and reliable
if the arguments of the distribution function are extremely large resp. the proba-
bilities inserted into the quantile function are very close to zero or one. The latter
difficulty can occur in risk management, especially in credit risk, where one has to
calculate values at risk or expected shortfalls for probabilities beyond 99% and to
deal with small default probabilities. In the first part of this paper, we analyze the
tail behaviour of univariate GH distributions in greater detail and derive asymptotic
formulas for the distribution and quantile functions of GH distributions and their
convolutions that enable a simple calculation of approximative values of the latter.

The other major topic we are concerned with in the second part of the paper is
the dependence structure of multivariate GH distributions. In practice, correlation
still seems to be the predominant dependence measure although it only provides a
complete characterization of dependencies in case of a multivariate normal distri-
bution. The dependence structure of the latter is indeed linear and fully described
by the corresponding correlation matrix. However, the picture changes significantly
if one departs from the normal world. In general, zero correlation does not imply
independence, and maximal dependence (co- or countermonotonicity) can already
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occur for correlations with absolute value strictly smaller than one. We will show
that the latter also holds for multivariate GH distributions.

Another dependence concept that has gained increasing attention, especially in
credit portfolio modeling, is tail dependence. Roughly speaking, the tail dependence
coefficients give the asymptotic probabilities of joint extremal events which may be,
for example, multiple defaults in a credit portfolio within the same time interval or
severe losses of different stocks at the same trading day. Tail dependence is solely
determined by the implied copula which is inherent in every multivariate distribution
and—in contrast to correlation—completely characterizes the dependence structure
of the latter. The implied copula of a multivariate normal distribution is known to be
tail independent, that is, extreme marginal outcomes occur (asymptotically) inde-
pendent from each other. In credit and insurance risk modeling, this property often
is not realistic, therefore dependence models in this area are usually based on cop-
ulas possessing tail dependence coefficients greater than zero like the t- or grouped
t-copula (see [9]). To see whether the implied copula of a multivariate GH distribu-
tion provides a suitable model in this context, we determine the potential range of its
tail dependence coefficients. It turns out that only the two extremal values O or 1 can
be obtained, implying that the GH copula either is tail independent or completely
dependent. For both cases, we derive explicit conditions on the GH parameters as
well as a simpler criterion for tail independence.

The paper is structured as follows: In the next section, we recall the definition of
univariate GH distributions as normal mean-variance mixtures, determine possible
limit distributions and provide some useful facts on normal mean-variance mixtures
in general as well as the mixing generalized inverse Gaussian distributions which
will be required later on. Section 3 then is devoted to a thorough study of the tail
behaviour of univariate GH distributions and their convolutions. Multivariate GH
distributions and their weak limits are introduced in Section 4, where also the most
important properties for the subsequent analysis of its dependence structure are dis-
cussed. The latter is done in Section 5 which finishes the paper.

2 Univariate GIG and GH distributions and some of their limits

Generalized hyperbolic distributions can be defined as normal mean-variance mix-
tures where the mixing distribution is a generalized inverse Gaussian (GIG) one.
For the convenience of the reader, we first define normal mean-variance mixtures in
general and provide some of their properties which might be of their own interest.

Definition 1. A real valued random variable X is said to have a normal mean-
variance mixture distribution if

XLu+Bz+VZW,

where i, B € R, W ~ N(0,1) and Z ~ G is a real-valued, non-negative random vari-
able which is independent of W. Equivalently, a probability measure F on (R, %)
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is said to be a normal mean-variance mixture if

F(dy) = /R N(t + By, ) (dx) G(dy),

+

where the mixing distribution G is a probability measure on (R4, %, ). We shall
use the short hand notation F = N(u + By,y) oG.

The most important facts about normal mean-variance mixtures are summarized
in the following lemma. It especially shows that properties like stability under con-
volutions and weak convergence are inherited from the mixing distributions. A de-
tailed proof can be found in [23, Lemmas 1.6 and 1.7].

Lemma 1. Let G be a class of probability distributions on (R, %) and suppose
G,G,G, €G.

a) If G possesses a moment generating function Mg(u) = [, ¢**G(dx) on some
open interval (a,b) with a < 0 < b, then F = N(it + By,y) o G also possesses a
moment generating function and My (u) = e““Mc;(% +Bu), a< % +Bu<b.

b) If G= G %G, € G, then (N([.Ll +By,y) oG1> * (N([Jz +By,y) oGz) =N(u +
Mo+ ﬁyay) oG.

¢) If (n)n>1 and (Bn)n>1 are convergent sequences of real numbers with finite lim-
its L, B < oo, and (Gy)n>1 is a weakly convergent sequence of mixing distribu-
tions with G, — G, then N(t, + Bny,y) 0 Gy — N(u+ By,y) o G.

We now leave the general case and concentrate on a specific class G of mix-
ing distributions, namely the generalized inverse Gaussian one mentioned above.
This class was introduced more than 50 years ago (one of the first papers where its
densities are mentioned is [22]) and rediscovered in [33], [34], and [4]. An exten-
sive survey with statistical applications can be found in [25]. The density of a GIG
distribution is as follows:

(L a1 (8 )
dGIG(l,(s,Y)(x) - (6) 2Kx(57) x e ? ]l(O,w)(x)a (1)

where K (x) denotes the modified Bessel function of third kind with index A. Per-
mitted parameters are

6>0,y>0, if A>0,

60>0,y>0, if A=0,

6>0,y>0, if A<0.

Parametrizations with § = 0 or ¥ = 0 have to be understood as limiting cases. Using
the asymptotic behaviour

r(a -l
Kx(x>~¥(§) . xl0,A#0, )
of the Bessel functions where I"(x) denotes the Gamma function, the limit for A > 0
is obtained as
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A A—1
72> x 7 4

;li%dGlG(l,S,y) ('x) = (2 F(x) e 7 ]1(0700)()6) = G(}L.ﬁ)(x)7 (3)

which is nothing but the density of a Gamma distribution G(A, ﬁ) with shape pa-

rameter A and scale parameter g For A < 0, we arrive at

52

Ao A1
) 2 X _o _
lim derG(2.8.9) (*) = (52> reay¢ = los () =dig; 2

which equals the density of an inverse Gamma distribution iG(A, 572)
For |A| = 1, the Bessel function K} (x) can be given in explicit form: We have

Ki%(x) :K%(x) =/ e ", thus

— 6 e*i(’YX*B)z ]1

dG1G<_%7577> (x) = NGT e (0,00) (x)

which is the density of an inverse Gaussian distribution /G(8,y), showing that the
GIG distributions are, in fact, a natural extension of this subclass.

A distribution G on (R4, %) is completely characterized by its Laplace trans-
form £6(u) = [g, e "**G(dx) from which many properties of G can be easily de-
rived. For the GIG class, we obtain the following representations (see [23, Proposi-
tion 1.9] for a proof).

®)

Proposition 1. The Laplace transforms of GIG distributions are given by

A
K (8v/7+2
SG’G“"S‘”(”):<WYT2L¢> A(mgy? a0
2u
L)W= <1+y2> , A>0,
A
2 2K, (6v2
g N(u):( ) ‘(7 W, A <0.
iG(A, %) O/ 2u F( l)

With help of the preceding proposition and the fact that £¢, (1)L, (1) = £6(u)
implies G * G, = G, one can derive the subsequent convolution properties of GIG
distributions:

a) 1G(01,7) *1G(62,7) =1G(81 + &2,7),

b) 1G(81,7)*GIG(3,8.,7) = GIG(%,81 + &.7),

¢) GIG(—21,8,7)xG(2 —):GIGléy) A >0,

&) G(M, L) %G, 5) =G+ 4, §), Ao > 0.

(6)
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Further observe that all GIG(A, 8, y)-distributions with ¥ > 0 decay at an exponen-
tial rate for x — oo, so they possess moments of arbitrary order, and the moment
generating functions are given by

o

Mgic(.s.y) (1) :/0 e dgioo.sp(X)dx = Lar6as.y) (—u), ue (=, %). ()

After these preliminaries, we can now study the class of generalized hyperbolic
distributions which have been introduced in the seminal paper [4], motivated by
empirical statistics of aeolian sand deposits. The GH distributions are defined as
normal mean-variance mixtures with a GIG mixing distribution as follows:

GH(A‘va7B767“) :N(”+By7y)OGIG(l765 \% a2 _BZ) (8)

The parameter restrictions for GIG distributions immediately imply that the GH
parameters have to fulfill the constraints

6§>0,0<|Bl<a, if A>0,
ApeR and 6>0,0<|Bl<a, if =0,
6>0,0<|B|<a, if A<O.

As before, parametrizations with = 0 and || = a have to be understood as lim-
iting cases which by Lemma 1 ¢) equal normal mean-variance mixtures with the
corresponding GIG limit distributions. We defer a more precise introduction of the
latter and first concentrate on GH distributions with parameters 6 > 0 and |B] < o..
Their Lebesgue densities are given by

dGH(l,a,[i,é,u)(x):/o dN(u+By,y)(x)dGlG(;L737\/m) (v)dy
9

—a(A,a,B,8,1) (8> + (x— M)Z)W%)/ZKH (a 524 (x_'u)2> Ba1)

with the norming constant

(az _ﬁZ)%
V2m ot 184K, (5/a2 —B2)

A closer look at the densities reveals that the influence of the parameters is as fol-
lows: o determines the shape, B the skewness, { is a location parameter, and &
serves for scaling. A characterizes certain subclasses and considerably influences the
size of mass contained in the tails. Setting A = —% leads to the subclass of normal
inverse Gaussian distributions (NIG). By (8), these are the normal mean-variance
mixtures arising from inverse Gaussian mixing distributions which explains their
name. With the symmetry relation K_; (x) = K, (x) and the aforementioned repre-

sentation of K ! (x), its densities are obtained from (9) and (10) as

a(A,o,B,6,u) = (10)
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_ @ K (OC 52+(X—,LL)2) o0 o2 BZip(

(1)
T 62+ (x—p)?

dNIG(a,ﬁ,&u) (x)

From Lemma 1 a), Proposition 1, and equation (7) we conclude that all GH distri-
butions with parameters d > 0 and || < & possess a moment generating function
of the following form:

u?

M35 () = " M. 5. /ey (7 +Bu)
2

:e“"QGIG(m az_B2>(—“7—[3u) (12)
(B )%mawﬂmum
o — (B +u)? K (82 —p2)

which is defined for all u € (—a — 8,0 — ). The characteristic functions of GH
distributions are easily obtained via the relation

OHM,a.p,6,u) (1) = /]RemxdGH(l,a,ﬁ,S.u)(x>dx:MGH(A,a,ﬁ,S,u)(i”)' (13)
The limit distributions emerging in the case of A > 0 and § — 0 are also known

as Variance Gamma distributions (VG). By Lemma 1 c¢) and equation (3), they are
normal mean-variance mixtures of the following form:

VG(A, a,B, 1) = N(i+ By,y) o G(A, L35, (14)

Using the asymptotic relationship (2), the corresponding densities can be obtained
as pointwise limits (for x — p # 0) of the GH densities:

dyGr,app)(X) = gii%dGH(l,a,ﬁ,&,u)(x)

(15)
(o — B2)* P Bl—p)
- - E K, (oe— ) B0,

VEQa)}2r(2)

This class was introduced in [27] (symmetric case § = 6 = 0) and [26] (general
case), but with a different parametrization VG(o, Vv, 0, fi). The latter is obtained by

,  2A 1

2B
g VTu

6=po’ = fi=p

o o — B2’

Lemma 1 a), Proposition 1, and equation (7) imply that all VG distributions possess
a moment generating function which is given by

2 a’—B? A
MyGapuw () =" 560.0 e (=5 —Bu) = (062—(u)2) 1o

forallu € (—o— B, — ).
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For A < 0, there are two possible limit cases. If o, — 0, Lemma 1 ¢) and
equation (4) imply that the limit distributions are normal mean-variance mixtures

t(A,8, 1) = N(,y) 0iG(A, %) a7

which equal scaled and shifted t-distributions with f = —2A degrees of freedom (the
usual Student’s t-distribution is obtained with §2 = —2A). The associated densities
can again be obtained as pointwise limits of the GH densities:

1
. r(-a+l r— )2\
dt(l,é,u)(x):(X%IgodGH(l,a,ﬁ,&u)(x): \/%F(f/l)) (1+( 52”) > . (18)

The other class of limit distributions for A < 0 is obtained by letting 3| — o > 0.
Again by Lemma 1 ¢) and equation (4), these are normal mean-variance mixtures
given by

GH(A,a,+a,8,1) = N(u+ ay,y) oiG(1, ) (19)

and possessing the density
zl-ﬁ-%

VI 2 8 (=)

<Ky _y (/82 + (x— p)2) e,

This type of distribution was called generalized hyperbolic skew Student t-distribu-
tion and applied to financial data in [1].

Let us close this section by remarking that also the normal and GIG distributions
themselves can emerge as potential limits of univariate GH distributions. But the tail
behaviour and tail dependence of the former are already well-known, and for GIG
distributions there does not seem to exist a natural multivariate version of which
the tail dependence could be studied, therefore we tacitly ignore these two limiting
cases here and in the following.

dH(a,+a,8.0)(X) =
(20)

3 Tail behaviour of GH distributions and their convolutions

From the existence of a moment generating function one can already conclude that
the tails of the GH densities with 0 < || < o decay at an exponential rate. More
precisely, for x| — oo we have 8% 4 (x — u)? ~ x, and the asymptotic behaviour of
the Bessel functions

Kl (X) ~ 7€_xa X —> oo, (21)
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further implies K1 (00 /82+ (x— p)?) ~ (/& [x|7V/2 e~ M, s0 we obtain from

equation (9)

A6 a5 (x) ~ x| T e IRy oo (22)

where ¢ = |/ F5a(A,a,B,6,u), and a(A,, B, 3, ) is the norming constant from
(10). Completely analogously, we infer from equations (15) and (21) that

dyGnapp(x) ~ ExP e IR x oo, (23)
A
where ¢ = % Thus the GH and VG densities have semi-heavy tails in the

sense of the following

Definition 2. A probability density f with support R has semi-heavy tails if there
exist some constants aj,a; € R and by, b;,c1,c2 > 0 such that

f(x) ~er e x = —co, and f(x) ~cax®@e P x — oo,

From the above definition, it can be easily deduced that every probability distri-
bution F having a Lebesgue density f with semi-heavy tails also possesses a mo-
ment generating function which is defined at least on the open interval (—by,b,). In
case of GH and VG distributions we have ay =a; = A — 1, by =a+ B, b =0 —
andc; =cp =cresp.c; =c =¢.

A remarkable and probably surprising property of densities with semi-heavy tails
is that the tail behaviour of the corresponding distribution functions is the same up
to a multiplicative constant, which is shown in the next proposition.

Proposition 2. Let f be a probability density with semi-heavy tails characterized by
ay,az,by,ba,c1,c0, F(x):= [ f(y)dy be the associated distribution function and
F(x) :=1—F(x). Then f(x) ~ by F(x) as x — —o0 and f(x) ~ by F(x) as x — +oo.

Proof. Let us consider the right tail 7 (x) first. From the assumptions we get, using
partial integration,

F(x) :/ fOy)dy ~ cz/ Y2 e b2y dy = €2 yaz g=box ¢ %/ y2 b gy,
X X by by Jx

The claim now follows if we can show that (["y2~! e P2/ dy) (x22¢702%) S5 0as
x — oo, But the latter quotient equals

00 — oo ar—1
1 / (X)“2 Lot gy = 1 / YENNTE by
X Jx X X JO X

and thus converges to zero as x — oo because the existence of an integrable majorant
ensures that the integral on the right hand side remains bounded. Possible majorants
are g(y) = (y+ )2 le™® if ap > 1 and g(y) = e 7?2 if @, < 1. Using the change
of variables z = —y we see that for x — —oo
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X o
F(x) ~c; / ly|4r e b1l dy = ¢ / e iy,
— o0 ‘

|x

hence the assertion for the left tail immediately follows from what we have proven
above. t

The tail behaviour of the t-distributions, however, can be derived much eas-
ier. The asymptotics of the corresponding densities are easily seen from (18) to
equal d;( s 1) (%) ~ |x[*A=1, x — oo, Hence, Figsu)(x) ~ ﬁ|x|2}”. The knowl-
edge of the tail behaviour allows to derive the asymptotic behaviour of the associ-
ated quantile functions as well. This is of particular importance for GH- and VG-
distributions whose distribution functions cannot be given in closed form, and a
reliable and rapidly convergent series expansion for these is not known either. To
determine quantiles of the former, one therefore has to resort to numerical integra-
tion of their densities. This may—depending on the quality of the integration routine
used—Iead to more or less inaccurate and unstable results for p-quantiles if p is very
close to 0 or 1. The quantile asymptotics are summarized in the following lemma
which is a slightly modified version of [3, Lemma 3.1]. Due to its importance for the
derivation of the tail dependence coefficients in Section 5, we also provide a short
proof here.

Lemma 2. Suppose F : R — [0, 1] is a continuous and strictly increasing distribu-

tion function.

a) If F(x) ~ ci|x|™™ as x — —oo and 1 — F(x) ~ cpx™2 as x — oo for some

€1 1

ai,az,ci,c2 >0, then F~'(u) ~ — (<) and F~'(1—u) ~ ()% foru 0.

b) If instead F(x) ~ c1|x|“ e 1M as x — —oo and 1 — F(x) ~ cyx®e 2% as x — oo
for some ay,a; € R and by,by,c1,ca >0, then F~ ' (u) ~ % and F~1 (1 —u) ~
- Lii”) foru 0.

Proof. a)If 1 — F(x) ~ cpx~ 92 as x — oo, then for any r > 0

1

— €\ ay
L F(()E)
ul0 u

—ay

For r < 1, the right hand side of the above equation is greater than one, so we
1
conclude that in this case 1 — F(r(%)®) > u for sufficiently small u and hence
1
F~'(1—u) > r(%)® (note that the assumptions on F imply F~'(F(y)) =y
1
for all y € R). If r > 1, then we similarly obtain 1 — F(r(%) “2) < u and thus

1
F~'(1—u) <r(%)® for sufficiently small u. This proves the assertion for F ' (1—
u), and the asymptotic behaviour of F~!(u) for u | 0 can be shown analogously.

b) If 1 — F(x) ~ cpx®2e72* as x — oo, then we have

rlog(u) a I
—17F(7 ) =limc, (_rlog(u)) e :{ b

by 0, r>1.

lim
ul0 u ul0
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With the same reasoning as before we conclude F -1 (1—u)~— % for u | 0, and

the corresponding result for F~!(u) is easily obtained along the same lines. U

Observe that the tails of the densities dgy (3¢, +a,5,u) () Of the generalized hyper-
bolic skew Student t-distribution behave completely different for large arguments.
If B = «, then by (21) the asymptotic behaviour is as follows:

e aasw (x) ~ & [ e x5 —co,
~ B 24)
dGH(A,oc,oc,é,u)(x) ~ 2 |x|/1 1’ X — oo,
and the other way round if B = —a. Hence, they have one semi-heavy and one

heavy (power) tail, so the asymptotic behaviour of their distribution functions and
quantiles is obtained by combining the corresponding results above. Further, it is
easily seen from equation (1) that the GIG densities possess a semi-heavy right tail

,)/2

with parameters ap = A — 1, by = 5, and ¢ = , so the above lemma and

_r
264K, (87)
proposition can also be applied here.

But not only the tail behaviour of single GH distributions, also that of con-
volutions of the latter is of interest in finance. Think, for example, of factor
models for credit portfolios where for each portfolio constituent a state variable
Xi = /pPM +/1—pZ;, 0 < p < 1, with a systematic factor M and an independent
idiosyncratic factor Z; is defined. The portfolio loss distribution derived from this
approach then entails the quantile function Fy_ ! (pa) of the distribution of X; which
has to be evaluated for typically very small default probabilities p,. If the factor
distributions Fjs and Fz, are not stable under convolution, the distribution of X; is
usually unknown, therefore the quantiles Fy ! (pa) can only be determined by either
time-consuming simulations or advanced numerical methods. Precisely this is the
case if one assumes the factors to be GH distributed. From Lemma 1 b) and equa-
tion (6), one can deduce the following convolution properties of the GH family:

a) NIG(a,B,8:,u1)*NIG(a,B,8, 1) = NIG(a, 3,8 + &, 1 + W),

b) NIG(at, B, 61, 1u1) * GH (3,0, B, &, ) = GH (3,0, B, 81 + 8. pa + o),
©) GH(—2,a,B,8,1)+xVG(A,a,B,m2) = GH(A, 0, B, 8,1 + pa), A >0,
d) VG(A, @, B, 1) *VG(A2,a, B, u2) =VG(A + Az, @, B, i1 + p2), Ar, 22 > 0.

(25)

Inspecting the Laplace transforms of GIG distributions given in Proposition 1 more
closely, one can deduce that the list of GIG convolution formulas (6) is complete,
that is, no other convolution of two GIG distributions will yield a distribution that
itself is contained in the GIG class. Consequently, there do not exist more than
the four convolution formulas above for the GH family either. In particular, a con-
volution of two GH distributions with different parameters @ and/or 3 cannot be
GH distributed itself. This fact makes the application of generalized hyperbolic fac-
tor models computationally demanding, therefore some (approximate) formulas for
ij 1 (pa), at least for small probabilities p,, which are faster and easier to evaluate
would be desirable here. For a more thorough introduction to GH factor models,
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we refer to [11] and [23, Chapter 3]; there the quantiles of the convolution were
calculated with help of Fourier inversion.

The behaviour of GH convolution tails is described in Proposition 3 below. The
latter applies, in fact, to an even slightly more general framework where both factors
belong to .Z, 5, the class of distributions with exponential tails with rates a and b,
which we define as follows:

Definition 3. A distribution function F is said to have exponential tails with rates
a>0andb>0(F € %) ifforallyc R

lim Flx=y) =e¢ @ and lim M =,
e TF () e F(x)

Note that most definitions of exponential tails only use one index which charac-
terizes the behaviour of the right tail F (x). This is due to the fact that these arose
from extreme value theory or more generally actuarial sciences where one typically
works with probability distributions on R;.. The above is a natural generalization to
distributions having support R we are concerned with.

The class .,  is closely related to the class &), of regularly varying functions to
be introduced in

Definition 4. A measurable function g is regularly varying with exponent p € R
(g € Zp) if limy e % = sP forall s > 0.

We have F € %, iff F(—In(x)) € #Z_, and F(In(x)) € %Z_;. To see this, put
s=¢  andt = e %, then
F(—In()—1In(s)) .. F(—In(st))

TR T TR EC ) AR ECR)

and the assertion for the right tails follows analogously with s = e™ and ¢t = €*.
Using Definition 2 and Proposition 2, it is immediately seen that for a probability
distribution F possessing a density f with semi-heavy tails we have

llm F(‘x_y) — llm f(x_y) — llm “x_yl lefb1(|x7y\f|x\) :efbly
S TFR) e ) e\ ]

and an analogous limit is obtained for the right tails, hence F' € %}, ,. In partic-
ular, we see that GH(A,a, 3,6, 1)- and VG(A, a, B, u)-distributions belong to the
class .,Sfawqa_ - The asymptotic behaviour of the densities of the t-distributions,
however, is easily seen from (18) to equal d;(y 5 ) (x) ~ € |x[##=1, x — Foo. Hence,
F}(LS#)(X) ~ M%l|x|21, and thus E(;L737#>(—x),l:}(,1757”)(x) € %) . We defer the
latter for a moment and first consider convolutions of factors with exponential tails.
An easy solution occurs if the factors of the convolution have semi-heavy tails which
decay at different rates: the convolution tails are determined by the factor with the
heavier left (respectively right) tail.
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Proposition 3. Suppose that Fi € £}, ,, F> € .i”,;l B, With moment generating func-
tions Mr, (u) and M, (u). If by < by and by < by, then Fy % F € Ly, b, and

Fi«xF)(x Fi«xF)(x

i Iy i FLDO) ),

A detailed proof of this result can be found in [23, Proposition 1.16]. The assump-
tion above that both tails of F| are heavier than those of F, was just made for nota-
tional convenience. As it is easily seen, in general we have F| x F, = fhl By by Ay
that is, one factor may determine the left tail of the convolution and the other one
the right tail. In [19, Theorem 3 b)] it has been shown that if the right tails of F}
and F, are both exponential with the same rate a, then the right tail of Fj x F> is also
exponential with rate a, so we may conclude that F x F, = Zbl by bynb, TEMAINS

valid if by = by and/or by = b,. Summing up, we have the following

Corollary 1. Let F\,F, be the distribution functions of GH (A, 04,1, 61, 1) resp.

GH(A2,00,B,02, 1), and F = Fy « Fp. If oy + By # 0 + Bo and o) — B1 # o2 — Bo,
then

F(x)~ M,%M(—bl)F,fm()c)7 x — —oo, and F(x) ~ Mgy, (b2)Fy .. (x), x = oo,

where by = min(0 + 1,0 + B2), by = min(0 — 1,00 — B), and E}, . (x), E . (x)
are the distribution functions of the GH distribution whose parameters o;, B; attain
the value by resp. by. The assertions remain valid if one or both factors are VG
distributed instead.

If oy + By = 0 + By or oy — By = oty — By, the left resp. right tail behaviour
cannot be precisely specified, and one only has the weaker result F € £}, ,.

Since the convolution tails are asymptotically equivalent to the tail of one factor dis-
tribution, multiplied by a constant, approximate quantile values of the convolution
for probabilities close to zero or one can be computed with help of Lemma 2 b). It
can be shown that the latter also applies under the weaker assumption F' € .Z}, p, .
Therefore, we obtain that the asymptotic behaviour of the quantile function of a con-
volution of GH distributions with o + B = @ + B is given by F~!(u) ~ (1)2%%)1 ,
u |0, and similarly, F~" (u) ~ — 22U for u1 1if o — By = 0 — .

A corresponding result for the regularly varying tails of the t-distributions can be
obtained by applying [6, Theorem 1.1 and the Theorem on p. 54] which yields

Corollary 2. Let Fy, F» be the distribution functions of t (1,01, 1) and t(Aa, 62, U2)
with corresponding densities f1, f», then

o xR L BB L (FieB)()
x|—veo f1(x) + f2(%) == Fi(x) + Fa(x) x5 Fi(x) + Fa(x)

If A; < Ay, then with the above notations we have f;(x) = o(f2(x)) as |x| — o and
Fi(x) = 0(F>(x)),x = —oo, as well as F (x) = o(F>(x)),x — oo, consequently
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o R e BB L (FieR) ()
TR MR TR R R

(see also [6, Theorem 2.1]). Hence, also in this case the tail behaviour of the con-
volution and the asymptotic behaviour of the convolution density is determined by
the factor with the heavier tails. Approximate quantile values can then, similarly as
before, be calculated using Lemma 2 a).

4 Multivariate normal mean-variance mixtures and GH
distributions

Let us first fix some notations which will be used throughout the rest of the pa-
per: The vectors u = (uy,...,ug)" and x = (xi,...,x;) " are elements of R, the
superscript | stands for the transpose of a vector or matrix. (u,x) =u'x = ):l‘»lzl UiX;
denotes the scalar product of the vectors u,x and |[u]| = (u} +--- +u2)!/? the Eu-
clidean norm of u. If A is a real-valued d x d-square matrix, then det(A) denotes
the determinant of A. The d x d-identity matrix is labeled I;. In contrast to u and
x, the letters y, s and ¢ are reserved for univariate real variables, that is, we assume
y,5,t € Ror Ry . To properly distinguish between the real number zero and the zero
vector, we write 0 € R and 0 := (0,...,0)" € R¢. Note that here and in the fol-
lowing d > 2 indicates the dimension, whereas n is usually used as running index
for all kinds of sequences. In particular, the notation N;(u,A) will be used for the
d-dimensional normal distribution with mean vector p and covariance matrix A.

With these preliminaries, we can formulate the multivariate version of Defini-
tion 1 as follows:

Definition 5. An R9-valued random variable X is said to have a multivariate normal
mean-variance mixture distribution if

XL u+2zB+VZAW,

where u, B € RY, A is a real-valued d x d-matrix such that A := AAT is positive def-
inite, W is a standard normal distributed random vector (W ~ N4(0,1;)) and Z ~ G
is a real-valued, non-negative random variable independent of W.

Equivalently, a probability measure F on (R?, %) is said to be a multivariate nor-
mal mean-variance mixture if

Fa) = [ Nolut3B,v4)(d) Gldy),

where the mixing distribution G is a probability measure on (R, %, ). We shall
use the short hand notation F = Ny (1 +yfB,yA) o G.

Remark 1. Note that one can further assume w.l.0.g. |det(A)| = det(A) = 1, since a
(positive) multiplicative constant can always be included within the variable Z. More
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precisely, let A = |det(A)|"1/9A, B = |det(A)|"/“B and Z = |det(A)[*/?Z, then
|det(A)| = 1 and p + ZB + VZAW = u +Zp + VZAW . Equivalently, if A = AAT
and G = Z(Z), then also det(A) = 1 and Ny (u +yB,yA) oG = Ny(u+yB,yA) o G.
Further observe that the use of a single univariate mixing variable Z causes depen-
dencies between all entries of X, as we shall see in Section 5.

The straightforward generalization of Lemma 1 in Section 2 is

Lemma 3. Let G be a class of probability distributions on (R, %) and suppose
G,G1,G, €G.

a) If G possesses a moment generating function Mg (y) on some open interval (a,b)
witha <0 < b, then F=N, (W +yB,yA) oG also possesses a moment generating
Sunction M (u) = e<”*”>Mg(<“’2i“> + (u,B)) that is defined for all u € RY with
a< &2 4w By <b.

b) If G = G1%Ga € G, then (Ny(thi +yB,yA) 0 G1) * (Na(p2 +yB,yA) 0 G2) =
Ny + 2 +yB,yA) o G.

¢) If (Un)n>1 and (Bn)n>1 are convergent sequences of real vectors with finite limits
w,B € RY (that is, |||, ||BI| < ), and (G,)u>1 is a sequence of mixing distri-
butions with G, = G, then Ny(t, +yBn,yA) 0 G, — Ng(p +yB,yA) oG.

For further reference, we also briefly highlight the relationship between multi-
variate normal mean-variance mixtures and elliptical distributions. From a financial
point of view, the latter are of some interest because they have the nice property that
within this class the Value-at-Risk (VaR) is a coherent risk measure in the sense of
[2] (this has been shown in [20, Theorem 1], see also [29, Theorem 6.8]).

Definition 6. An R?-valued random vector X has an elliptical distribution if there
exists a function ¥ : Ry — R, a symmetric, positive semidefinite d x d-matrix X
and some p € R? such that the characteristic function ¢ (u) = E[¢/“X)] of X admits
the representation

Ox(u) = ei<“’“>l//(<u,2u>) Vue R,

The elliptical distribution ' (X) then is denoted by E; (1, X, y(t)).

It can be shown that if an elliptical distribution has a density f, then it must neces-
sarily be of the form

B 1

flx)= \/T(Z)h(<X—H,271(X—ﬂ)>)

for some measurable function /2 : R — R;.. The level sets of such a density obviously
are the ellipsoids {x € R?|(x—u,X " (x —u)) = ¢}, & > 0, which explains where
the name of this class of distributions stems from. Combining [29, Theorem 3.22
and Definition 3.26], we get the following characterization of elliptically distributed
random vectors.
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Proposition 4. X ~ E; (1, X, (1)) if and only if

X L 11 +RAS

where R is an R -valued random variable, S is a random vector which is indepen-
dent of R and uniformly distributed on the unit sphere . := {& € RY| ||| = 1},
and A is a d x d-matrix fulfilling AAT = X.

The connection between elliptical distributions and multivariate normal mean-
variance mixtures is given in

Corollary 3. A normal mean-variance mixture F = Ny(L +yB,yA) o G is an ellip-
tical distribution if and only if B = 0, that is, if and only if it is a normal variance
mixture.

Proof. The characteristic function of F can be shown to have the form ¢p(u) =
e"<”7“>20(w —i(u, B)) which evidently has the representation etwh) v ((u,Zu)
required by Definition 6 with £ = A and y(¢) = £5(%) ifandonly if  =0. O

Now we leave the general theory and turn our attention to the multivariate GH
distributions. These have already been introduced as a natural generalization of the
univariate case at the end of the seminal paper [4] and were investigated further in
[7] and [8]. They are defined as normal mean-variance mixtures with GIG mixing
distributions in the following way:

GHy(A,0,B,8,1,A) := Ng(1L+yAB,yA) o GIG (A, 8,1/ o> — (B,AB)), (26)

where it is usually assumed without loss of generality (see p. 14) that det(A) = 1
which we shall also do in the following if not stated otherwise. Due to the param-
eter restrictions of GIG distributions, the other GH parameters have to fulfil the
constraints

6>0,0<(B,AB)<a, if 1>0,
LER, 0,6 cRy, B,ueR? and 6§>0,0</(B,AB)<a, if A=0,

§>0,0</(B,AB)<a, if A<0.

The meaning and influence of the parameters is essentially the same as in the uni-
variate case (see p. 6). Again, parametrizations with 6 =0, a =0or \/(8,AB) =«
have to be understood as limiting cases.

Note that the above definition of multivariate GH distributions as normal mean-
variance mixtures of the form Ny (i +yAB,yA) o G is of course equivalent to the
representation N, (U + yﬁ ,yA) o G used in the previous section because the d x d-
matrix A is always regular by assumption. The modification of the mean term just
simplifies some formulas as we shall see below. For notational consistency with
Section 2, the term GHy(A,a,3,8,1,A) will be reserved for multivariate GH dis-
tributions with 8, u € R¢, whereas GH(A, &, 8,8, it) denotes a univariate GH dis-
tribution with 8, u € R as before.



Tail behaviour and tail dependence of generalized hyperbolic distributions 17

If 6 > 0and \/{B,AB) < o, the density of GH;(A, 0o, 3,5, L,A) is given by

dGHd(},,OC,ﬁﬁ,u,A)(x) :/O de(u+)'A[3,_\fA)(x) dGIG(l,(S, a27<l3,AB)) (y) dy

_ (0> (B.AB))® AT 42D
en)tati8h Ky (6 a2—<B,Aﬁ>)(< AT )+ 57

@7

_ “1(y_ 2) (B x—1)
xK}F%(a\/QC A= (x—p))+6%)e

Remark 2. If the d x d-matrix A is replaced by a matrix A of the same dimen-

sions with det(A)_;ﬁ 1, then the normal density dy,(,4y4py4)(X) has an addi-
tional factor det(A)~1/2 which will be incorporated in the norming constant of
dGH,(0.8,6,u.4)(X)- Suppose A = ¢!/ A for some ¢ > 0, then det(A) = ¢, and if
we also replace A, &, 3, 8, 1t by the barred parameters

- 1 -

A=A, a:=cua, B:=p, Si=C72I75, h:i=u,

then it is easily seen from (27) that the densities of GHy(A, o, 3,6, 14,A) and
GHd(Z, a,pB,o, fi,A) and thus both distributions coincide. Note that these consid-
erations also remain true for all subsequently defined limit distributions. This again
shows that the assumption det(A) = 1 is not an essential restriction. The barred pa-
rameters will be used later at some points in Section 5 to indicate that det(A) = 1 is
not assumed there.

If multivariate GH distributions would have been defined as a mixture of the form
Ny(u+yB,yA)oGIG(A,8,+/a? — (B,AB)) (see the remark on the previous page),
then the last factor of the density (27) would be e<A71ﬁ =1 instead of e!# *x’m, and
B would have to be defined by = ¢'/“B.

With the special choice A = —%, one obtains the multivariate normal inverse Gaus-
sian distribution NIG,(a, B, 8, i, A) possessing the density
d+1 2
[2 5o 7 SV~ (B.AB) _ _di1
dNIGd(a,ﬁ,S,/.L,A)(x) =\ = a (<X—N7A I(X—ﬂ)>+52) ¢
T (2m)>2 28)

_ -1 — 2 <ﬁ ,X—,U,>
X Kt (o0 (= 1,471 (v ) + 82) et
Let us briefly mention possible weak limits of multivariate GH distributions here.

If A >0 and & — 0, then by equations (26), (3), and Lemma 3 ¢) we have conver-
gence to a multivariate Variance-Gamma distribution

w 2_
GHy(A,0t, B, 8,1, A) "Ny (1 +yAB,yA) 0 G(A, “=E2PN—VGy (X, 0, B, 11, A)

which has the density
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(o2 — (B, AB))*
(2m)%a*=22A-1 (1)

r=9)/2

dy, e ppn)®) = (r—p, A~ (x—p)))"

(29)

xKy g (o e . A1 (x = pr))) Bt

For A <0 and @ — 0 as well as B — 0, we arrive at the multivariate scaled and
shifted t-distribution with f = —2A degrees of freedom:

GHy(A,0,B,8,11,4) 5 Ny(t,yA) 0iG (A, %) = 14(A, 8,11, 4).

It has the density

d
2

r(-A+4) (1+<xu,A-1<xu>>>l 0

di,(2,5.u.8)(X) = i) 52

If A <0, but (B,AB) — o2, then we have weak convergence to the normal mean-
variance mixture

GHy(A,,B,8,1,4) = Na(1+yAB,yA) 0iG(1, )
possessing the density

214»17% 5721

_ -1 nA-4)2
dGH,/(l«\/(ﬁ,AB>«,B~,5,ﬂ~,A)(x)_ngr(_l)a,x,g ((e—p A7 x—p))+8%)"

(3D
X Kl_% (O‘\/<X_N7A_1(x—u)> +52) e(B,xfp)7

where oo = /(,AB).

The most important properties of multivariate GH distributions are summarized
in the following theorem which goes back to [7, Theorem 1], see also [8, p. 49f].
It shows that this distribution class is closed under forming marginals, conditioning
and affine transformations.

Theorem 1. Suppose X ~ GHy(A, o, B,8,1u,A). Let (X1,X>)" be a partition of X
where X1 has the dimension r and X, the dimension k =d —r, and let (B, ;)" and
(W1, u2) " be similar partitions of B and p. Furthermore, let

Ay A
A =
(Azl Ax
be a partition of A such that Ayy is an r X r-matrix. Then the following holds:
a) X; ~ GH,(A*,a*,B*, 6%, u*,A*) with starred parameters given by A* = A,

o =det(Ay) ¥ \/062— (B2, (A2 — A1 A AR) Bo), B*=Bi+ A Ao, 87 =
det(An)%S, ,LL>'F = U, and A* = det(All)’%A“.
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b) The conditional distribution of X, given X| = xj is GHk(i, C ,ﬁ,s,ﬁ,j) with
tilded parameters A = A — 5, 0= det(An)ia, B = B, § = det(All)ii
x /82 4 et — 1, A (= 1), = o+ A A (v — ), and & = det(Ap)
x (A — A1 A Ar).

c) Suppose Y = BX + b where B is a regular d x d-matrix and b € R?, then
Y ~ GHy(A,6.,B,8,[1,A) where & = A, & = |det(B)|"7a, p = (B-)TB,
5 = |det(B)|6, i = Bu+b, and A = |det(B)|"4BAB”.

Remark 3. An important fact we want to stress here is that the above theorem re-
mains also valid for all multivariate GH limit distributions considered before. Thus,
one can in particular conclude from part b) that the limiting subclass of VG distri-
butions itself is, in contrast to the t limit distributions, not closed under condition-
ing. This holds because the parameter 5 of the conditional distribution in general is
greater than zero, and the parameter A=1— 5 may become negative if the subdi-
mension r is sufficiently large.

Moreover, all margins of #;(4,8,1,A) are again t distributed 7,(4,0*,u*,A*)
because if the joint distribution has the parameters o = 0 and 8 = 0, part a)
of the theorem implies that o* = 0 and $* = 0 for every marginal distribution.
Similarly, all margins of VG,(A,,B,u,A) are again VG distributions because
if 6 =0, then also 6 = 0. In addition it can be shown that all margins of
GH;(A,+/(B,AB),B,8,1,A)-distributions are of the same limiting type as their
joint distribution, too.

Let us finally take a closer look at the moments of multivariate GH distribu-
tions. By Definition 5, every random variable X possessing a multivariate nor-

mal mean-variance mixture distribution admits the stochastic representation X 4
W+ ZB 4+ /ZAW with independent random variables Z and W ~ Ny(0,1;). The
standardization of W and its independence from Z imply that

EX)=u+E(Z)B 32)
Cov(X) =E[(X—EX))(X —E(X))"| =E(Z2)A+ Var(Z)BB "

with A = AAT, provided that E(|Z|), Var(Z) < oo. If X ~ GHy(A,,3,8,1,4),
then by (26) X £yt +ZAB + VZAW and Z ~ GIG(A,8,+/a? — (B,AB)). Using

Proposition 1 and equation (7), one obtains explicit expressions for E(Z) and Var(Z)
which can be inserted into the general equations above to finally obtain

8 Kp(8)
¢ K(0) (33)

st K3.1(9)
a8 ()

E[GHd(A'aavﬁvavuaA)]:u"_ ﬁv

2
Cov[GHy(A, o, B, 8,1, A)] = ‘2% 7
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with { = 81/a2 — (B,APB). In case of the Variance-Gamma limits we have

E[VGd(lvavﬁvuaA)] _I'L'i_az_?gmﬁa
’ (34)
Cov[VGa(h, o, B, 1, A)] = az_fg’AmAjL <a2—?liAﬁ>)2BﬁT'

Observe that by Lemma 3 both multivariate GH and VG distributions possess mo-
ment generating functions and hence finite moments of arbitrary order because the
mixing GIG and Gamma distributions do have this property. This is no longer true
for the limit distributions with A < 0 because the corresponding inverse Gamma
mixing distributions only have finite moments up to order r < —A. By Theorem 1
a), the marginal distributions of 75 (1,8, 11, A) are given by t(A,/A;6, 1), 1 <i<d
(recall that o« = 0 and B = 0 in this case), and from their tail behaviour (see p. 9)
one can easily conclude that mean vector and covariance matrix of the t limit distri-
butions are well defined and finite only if A < —% resp. A < —1. If these constraints
are fulfilled, then

2

E[td(l,5,u,A)]:‘Ll and COV[td(A«,(SHU.,A)]:mA

(35
In the other limiting case where (8,AB) = a® > 0, equations (32) state that nec-
essary and sufficient conditions for the existence of a mean vector and covariance
matrix of the limit distributions are that the inverse Gamma mixing distributions
have finite means and variances which holds true if and only if A < —1 and A < —2,
respectively. If A is appropriately small, then

2
E[GHd(Aa <ﬁ7Aﬁ>7ﬁ757”’A)] :”+$ﬁ’

(36)
2 4
Cov[GH, (A, \/(B,AB),B,8,1,A)] = _2i_2A+4(A+1)§(—A—2)BﬁT'

5 On the dependence structure of multivariate GH distributions

Correlation is probably the most established dependence measure due to its sim-
plicity and its predominant role within the normal world where it characterizes de-
pendencies almost completely. This follows from the fact that the components W;,
1 <i<d, of a standard normal distributed random vector W ~ N;(0,1;) are inde-
pendent from each other (the joint density is just the product of the marginal ones
in this case) and the stochastic representation

X ~Ny(u,A) <= XZu+AW where W ~ Ny (0,1;) and AAT = A.
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Since X in distribution is nothing but a linear transform of a random vector W with
independent (normal distributed) entries, the components of X can, roughly speak-
ing, exhibit at most linear dependencies, and exactly these are specified and quan-
tified by the pairwise correlations. However, things completely change if we depart
from normality and consider normal variance mixtures instead. Suppose

X ~Ny(i,yA) oG, thatis, X < p+vZAW

where £ (Z) = G, W ~ Ny(0,1;) and AAT = A according to Definition 5. As we
already remarked on p. 15, the mixing variable Z causes dependencies between the
components of X, but these are typically not captured by correlation as the following
lemma shows. It is a slightly more general version of [29, Lemma 3.5] which we
adopt here since—in our opinion—the result is as simple as illustrative.

Lemma 4. Suppose that X 4 W -++/ZAW has a normal variance mixture distribution
where E(Z) < o and A = AA" is a d x d-diagonal matrix such that Cov(X;,X;) =
0,1<i,j<d,i+# j, by (32). Then the X;, 1 <i<d, are independent if and only if Z
is almost surely constant, that is, if and only if X is multivariate normal distributed.

Proof. Because A is diagonal (and positive definite by Definition 5), we can assume
without loss of generality that also the matrix A is diagonal and A;; = /A, 1 <i<d.
The independence of Z and W and Jensen’s inequality then imply

E(ﬁp(,»u,-) —E<(ﬁ)dﬁ|@M|>_ ﬁ VA W)

i=1
d

> £(v2)" (v aw) = T£( - i)

i=1

Since the function f(x) = x? is strictly convex on R, for d > 2, equality throughout
holds if and only if Z is constant almost surely. (]

Remark 4. The above result can even be extended: If X < W+ ZB +/ZAW has a
normal mean-variance mixture distribution with 0 < Var(Z) < oo, A = AAT is a
d x d-diagonal matrix and Cov(X;,X;) = 0 for some 1 <i# j <d, then X; and X;
are not independent either. This can be seen as follows: Since A is diagonal and
Var(Z) > 0, by (32) Cov(X;,X;) = 0 implies that (38 ");; = 0. This means, either
Bi =0 or B; =0 (or both, but then we would be within the setting of Lemma 4
again). Suppose f3; # 0 and B; = 0, then we calculate using similar arguments as
above

E((Xi— w) 1X; — wjl) = E((BZ+VZ\/ A W) VZ~\/A}; W)
— E(( ﬁiZ% + 2/ W) E (\FW'I) =BE(Z3)E(|\/A;W)))
> BE@)E(VA;W)) = VE(2) E(|\/A;;Wj)
>E([3, ( )(IFWI) X—ui)E(lXj—ujl)v
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and the inequalities are strict because f(x) = x2 and g(x) = /x are strictly convex
resp. concave and .Z’(Z) is non-degenerate by assumption.

Thus, in general zero correlation within multivariate normal mean-variance mix-
ture models must not be interpreted as independence. In particular, the components
X; of a generalized hyperbolic distributed random vector X ~ GHy (A, ¢, 3,0,1u,A)
can never be independent because Theorem 1 b) states that the conditional dis-
tribution X(X,' (X1, X1, X1, X)) T = )Z) = GH(Z,&,B,S,/J) always de-
pends on the vector ¥ (at least the parameter 5 does s0) for every 1 <i<d.
Moreover, it should be observed that for generalized hyperbolic distributed ran-
dom variables the maximal attainable absolute correlation is usually strictly smaller
than one: the Cauchy-Schwarz inequality states that |Corr(X;,Xz)| = 1 can oc-
cur if and only if X, = aX; + b almost surely for some a,b € R and a # 0,
but if X| ~ GH(A] , 0 ,ﬁ] , ) ,,Ll]) and Xp ~ GH(&Q, Otz,ﬁz, 52,[.12), the required
linear relationship imposes some conditions on the GH parameters. Recall that
aX)+b~GH(A,& B 6la|,ap + b) by Theorem 1 c). Thus, using the scale- and

af? a2
location-invariant parameters §; = & (a? — ﬁiz)% and p; = %, i =1,2, we conclude
that X, = aX; + b can hold only if §; = §, |p1| = |p2| and A; = A,.
Having seen that correlation is in general not the tool to precisely describe and
measure dependencies in multivariate models, one may ask if there exists a more
powerful notion for this purpose. The answer is provided by

Definition 7. A d-dimensional copula C is a distribution function on [0,1]¢ with
standard uniform marginal distributions, that is, C : [0, 1]¢ — [0, 1] has the following
properties:

a) C(u) =C(uy,...,uy) is increasing in each argument u;,
b) C(1,...,L,u;,1,...,1)=u; forall | <i<dandu €[0,1],
¢) Forall (ay,...,aq)", (b1,...,bg)" €10,1]¢ with a; < b;, 1 <i<d, we have

2 2
Z Z (fl)i1+"'+idC(M1il,---7Mdid) >0,
i1=1 ig[:l

where uji =a;anduj =b; forall 1 < j<d.

Properties a) and b) immediately follow from the definition of C(u) as a distribution
function with identically uniformly distributed marginals on [0, 1], ¢) essentially is a
reformulation of the fact that if U = (Uy,.. ., U,) " is a random vector possessing the
distribution function C(u), then necessarily P(a; < Uj < by,...,aq <Uy; <by) > 0.
It can also be shown that these properties are sufficient, that is, every function C :
[0,1]¢ — [0,1] fulfilling a), b) and c) is a copula. Clearly, the k-dimensional margins
of a copula C are also copulas for every 2 < k < d.

The central role of copulas in the study of multivariate distributions is highlighted
by the following fundamental result which goes back to [35]. It not only shows
that copulas are inherent in every multivariate distribution, but also that the latter
can be constructed by plugging the desired marginal distributions into a suitably
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chosen copula. A short and elegant proof of Sklar’s Theorem which is based on the
distributional transform can be found in [31].

Theorem 2 (Sklar’s Theorem). Let F be a d-dimensional distribution function with
margins Fy,...,Fy. Then there exists a copula C : [0,1]¢ — [0, 1] such that for all

X = (xl, . ,xd)T c [—oopo]d
F(xi,...,xq) =C(Fi(x1),...,Fa(xq)). (37)
IfFy,...,Fy are all continuous, then C is unique, otherwise C is uniquely determined

on Fi(R) x --- x Fy(R) where F;(R) denotes the range of F;.

Conversely, if C : [0,1]¢ — [0,1] is a copula and Fy, ..., Fy are univariate distribu-
tion functions, then the function F (x) defined by (37) is a multivariate distribution
function with margins Fy, ..., Fy.

If all marginal distribution functions F; of F' are continuous and their generalized
inverses F; ! are defined by ;"' (u;) := inf{y| Fi(y) > u;} (with the usual convention
inf(@ = o), then F; (Ffl (u,)) = u;. Thus it immediately follows from (37) by insert-
ing x; = F;l(u,-), u; € [0,1], 1 < i <d, that in this case the unique copula Cr(u)
contained in F is given by

Cp(ul,...,ud) e F(Flil(ul),. .. 7f‘;;l(l,td)). (38)

The computation of this so-called implied copula Cr(u) is in general numerically
demanding if the distribution function F(x) is not known explicitly. Suppose for
example that only the density f(x) of F can be expressed in closed form, then al-
ready the determination of a single value F (x) requires to evaluate a d-dimensional
integral which especially for greater dimensions d can hardly be done sufficiently
precise in reasonable time. But for multivariate normal mean-variance mixtures it is
sometimes possible to significantly reduce the numerical complexity: Suppose that
F =Ny(+yB,yA) oG with known margins F; possessing Lebesgue densities f; as
above, and let O be an orthogonal d x d-matrix such that OAO is diagonal, then

Cp(ul,...,ud) :F(Flil(ul),...,Fdil(ud))

Fdil(“d) Flil(”l) o
= Lw /;oo /0 de(HJr},ﬁ_’yA)(xl,...,xd)G(dy)dxl...dxd
(39)

oo d
= |} TT%ouwemnionorsy (O ") 5 wa)T),) 6@,

where (15< 11,62) denotes the (univariate) distribution function of N(pu, 0'2). The last
expression can be evaluated much easier on a computer since it only requires the
calculation of one-dimensional integrals (possibly more than one because the values
Fi’1 (u;) of the marginal quantile functions may only be obtained by integrating the
corresponding densities f;(x;) numerically).

If in addition to the marginal distributions F; also F itself possesses a Lebesgue
density f(x), a further simplification can be achieved by using the (implied) copula



24 Ernst August v. Hammerstein

c(u_1u_2)

Fig. 1 Densities of implied copulas of bivariate GH distributions and their limits. The under-
lying distributions are as follows: fop left: symmetric NIG,(10,0,0.2,0,A), top right: skewed
NIG>(10,(1),0.2,0,A), bottom left: skewed NIG> (4, ( 3,),0.2,0,4), bottom right: t(—2,2,0,4).

For all distributions 4 = (37 ) with p =0.3.

density cr(u) which is defined by

cF(u1 ud) - 8CF(”17~~~7”¢1) _ f(Flil(Ml),...,Fdfl(ud))
yeeesltg) duy ...duy fl(Fl_l(ul))"'fd(Fd_l(ud))

where the last equation immediately follows from (38). Combining (40) and The-
orem 1 a) allows to calculate the copula densities ¢, (1,a.8,5,u,4) (%) of all multi-
variate GH distributions including the aforementioned limits. Some results for the
bivariate case are visualized in Figure 1 above. Note that the choice of p = 0.3 im-
plies det(A) = 1 — p? < 1, so the parameters of the t- and NIG distributions are the
barred ones (4, &, B, 8, ft) defined in the remark on page 17. If B = B = 0, then by
equations (33)—(35) A equals the correlation matrix of the related distribution.
Apart from being inherent in every multivariate distribution, the importance of
copulas relies on the fact that they encode the dependencies between the margins F;
of F. Many popular dependence measures like, for example, Kendall’s tau, Spear-
man’s rho, or the Gini coefficient can be expressed and calculated solely in terms of
the associated copulas (see [29, Proposition 5.29], and [30, Corollary 5.1.13]). Thus
the assertion of Sklar’s Theorem might alternatively be stated in the following way:
Every multivariate distribution can be split up into two parts, the marginal distri-

. (40)
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butions and the dependence structure. The next proposition shows that copulas and
hence all dependence measures that can be derived from them are invariant under
strictly increasing transformations of the margins. A proof can be found in, e.g., [29,
Proposition 5.6].

Proposition 5. Suppose that (X, ...,X;) " is a random vector with joint distribution
function F, continuous margins F;, 1 <i <d, and implied copula Cr given by (38).
Let Ty, ..., Ty be strictly increasing functions and G be the joint distribution function
of (Ti(X1),.. .,Td(Xd))T. Then the implied copulas of F and G coincide, that is,
Cr =Cg.

From the above proposition it especially follows that the correlation of two ran-
dom variables does not depend on the inherent copula of their joint distribution
alone because correlation is invariant under (strictly) increasing linear transforma-
tions only, but not under arbitrary increasing mappings. Correlation is also linked to
the marginal distributions since it requires them to possess finite second moments
to be well defined, whereas by Sklar’s Theorem a copula of the joint distribution
always exists without imposing any conditions on the margins.

We now turn to the dependence measure we shall be concerned with for the rest
of the present section, the coefficients of tail dependence, which are formally defined
by

Definition 8. Let F' be the joint distribution function of the bivariate random vector
(X1,X2)" and Fy,F> be the marginal distribution functions of X; and X,, then the
coefficient of upper tail dependence of F resp. X1 and X is

A= M(F) = M (X1, X)) = lqiglP(Xz >F, Nq)| X1 > F ' (q)),

provided a limit A, € [0, 1] exists. If 0 < A, < 1, then F resp. X; and X, are said
to be upper tail dependent; if A, = 0, they are called upper tail independent or
asymptotically independent in the upper tail. Similarly, the coefficient of lower tail
dependence is

)y[ = ),[(F) = ),[(X],Xz) = lqlﬂ)lP(XZ S Fz_l(q) |X1 S Fl_l(q)),

again provided a limit A; € [0, 1] exists. If A, = 4; = 0, then F resp. X; and X, are
tail independent.

If the distribution functions F; and F, are not continuous and strictly increasing,
F 1_1 and Fz_1 in the previous definition again have to be understood as generalized
inverses as defined on page 24.

The larger (or less) g, the more rare is the event {X; > F,"'(¢)} (respectively
{X; < F,"'()}). Thus the coefficients of tail dependence are nothing but the lim-
its of the conditional probabilities that the second random variable takes extremal
values given the first one also does so. In other words, they may be regarded as the
probabilities of joint extremal outcomes of X; and X;. This concept also is of some
importance in finance: Suppose, for example, that X; and X, represent two risky
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assets. If their joint distribution is lower tail dependent, the possibility that both of
them suffer severe losses at the same time cannot be neglected. In portfolio credit
risk models, X; and X, may be the state variables of two different firms or credit
instruments, and the coefficient of lower tail dependence can then be interpreted
as the probability of a joint default. Tail dependence is a copula property, which is
illustrated by the subsequent

Proposition 6. Let (X1,X;)" be a bivariate random vector with joint distribution
function F, continuous margins Fy,F,, and implied copula Cr as defined in (38).
Then the following holds:

a) The coefficients of lower and upper tail dependence can be calculated by
C 1—-2g+C,

a=tim 9D L —gim 22 Cr @)
alo g qtl l—gq

b) If in addition Fy,F, are strictly increasing, A; and A, can be obtained by
A= IqiE)IP(XQ <F 'q)|Xi = Ffl(CI)) +lqiﬂ)1P(X1 <F ' q)|X= in1(‘1)>,

vy =1qig11P(Xz >F, Nq) | X1 = F '(q)) +1qig11P(X1 >F Y q)| X2 =F '(q)).

The assertion of part a) of the proposition can be found in many textbooks on cop-
ulas and dependence, and part b) essentially follows from the ideas of [29, pp. 197
and 210]. A detailed proof can be found in [23, Proposition 2.22].

With the help of these preliminaries, we are now able to give a complete answer
to the question which members of the multivariate GH family show tail dependence
and which do not. To our knowledge, only symmetric GH distributions have been
considered in this regard in the literature so far. By equation (26) and Corollary 3,
every multivariate GH distribution with parameter § = 0 belongs to the class of el-
liptical distributions, thus the tail independence of GH, (A4, ,0,8, 1, A) (apart from
the t limit case with o = 0) can be deduced from the more general result below of

[24, Theorem 4.3]. It uses the representation X 4 U+ RAS of an elliptically dis-
tributed random vector X which was introduced in Proposition 4.

Theorem 3. Let X < U+ RAS ~ E, ([,L,Z, l//(t)) be an elliptically distributed ran-
dom vector with £;; >0, 1 <i <d, and |p;j| == |Z;i;/\/ZiiZjj| <1 foralli# j. Then
the following statements are equivalent:

a) The distribution function Fr of R is regularly varying with exponent p < 0, that
is, Fr € %) (see Definition 4).
b) (X;,X;)" is tail dependent for all i # j.

Moreover, if Fr € Z, with p <0, then for all i # j

-T/2
(7/2—arcsin(p; ;

~0n/2 coslPl(¢)dt

)2 cosl?l(¢)dr

M(Xi, Xj) = 4(Xi, X)) =
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If X ~ Ny(u,yA) oG has a normal variance mixture distribution which is ellipti-
cal by Corollary 3, then X admits the two stochastic representations p + /ZAW 4

x< U+ RAS where the vector i and the d x d-matrix A on the left and right hand
side coincide. This equation suggests that the tail behaviour of the distribution Fg
of R is mainly influenced by the distribution G of Z and vice versa. Indeed, one can
show that Fp is regularly varying with exponent 2p < 0 (Fg € %>,) if and only if
G € %, (see [29, pp. 92 and 2951]).

Suppose now X ~ GHy(A,,0,8, 1, A) (excluding the t limiting case for a mo-
ment), then by equation (1) the density of the corresponding mixing distribution

GIG(A, 8, a) has a semi-heavy right tail in the sense of Definition 2 with constants
a=A—-1,b,= 0‘72 and ¢ = (a/ ( ) . (In case of the VG limit, the density of the
(X
J 7

mixing Gamma distribution G( ) also has a semi-heavy right tail with the same

constants a, and b, but ¢, =

tribution functions of GIG(4,8,c) and G(A, "‘72) both have an exponential right
tail with rate b,. In view of Definition 4 and the subsequent remark, distribution
functions with exponential right tails can be regarded as regularly varying with ex-
ponent —eo. Consequently, for the distribution function Fg of R in the representation

x4 U+ RAS we have Fr € #_.. as well. Applying Theorem 3 yields

fﬂ'/2

. Pl(7)d
arcsin(p; ; cos'”i(r)ar
A(Xe, X)) = My(Xi,Xj) = lim “E2 /2<p,.,))/2

e Jo '~ coslPl(r) dt

:07

showing the tail independence of all symmetric GH;(4, e,0, 6, i, A)-distributions
with parameter o > 0.

Remark 5. The convergence of the ratio of the two integrals can be justified as fol-
lows: Since h: (—%,%) — R_ with h(x) = log(cos(x)) has an absolute maximum

at xo = 0 and 4" (x) = —cos~2(x), an application of Laplace’s method shows that
forall0 <b < %

b b
Pl dt:/ ) g o T lplho) — [ T o
/0 cos'?!(r) 0 e —2\p|h”(0) e 2|p|’ |p| = oo,

consequently
/2 arcsin(p;
i S /2-acsin(oy 2 €08 (1)t . JiFmaesin®iD2 o odlp (1) de .
im =1— lim =0.
pr—ee foﬂ/z coslP(¢)dt prmee fon/z coslPl(¢)dr

In the t limiting case, however, we have X 4 U+ VZAW ~ ta(A,8,1,A) with
Z~iG(A, 572), and from equation (4) it is easily seen that the density d;g(; s2/2) is
regularly varying with exponent A — 1. Hence G = Fz € %), and thus, as pointed out
above, Fr € %), so we conclude from Theorem 3 that 4, (X;, X;) = 4;(X;,X;) >0
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for all t distributions 7;(A, 8,1, A). The coefficients are quantified more accurately
in Theorem 4 below.

This main result of the present section shows that the dependence behaviour can
change dramatically if we move from symmetric to skewed GH distributions with
parameter B # 0: in addition to tail independence also complete dependence can
occur, that is, both of the coefficients A; and A, may be equal to one.

Theorem 4. Let X ~ GHy(A, ., 3,8,1L,A) and define p := \/AAlllﬁ as well as B; :=
VAiii for i = 1,2. Then the following holds:

a) If0 < \/(B,AB) < a, then the GH distribution (including possible VG limits) is
tail independent if —1 < p <0.If0 < p < 1, then

O Cx, C > p7
M(X1,X0) = (X1, X2) =
1, mm(L*, N <p,

Va2—(1-p )52+31+P[_52
V@2 —(1-p?)B+Ba+ppi”
b) IfA <0and a = 0 then X ~ty(A,6,u,A) and

where ¢y ==

(=22+1)(1-p)
Ma(X1,X0) = M (X1, X2) = 2F,; 1 /a0 <—\/ Tp ;

where F Va7 wru ) denotes the distribution function of the univariate Stu-
dent’s t- dzstrlbunon (A — ,\/ —24+1,0) with f = —2A + 1 degrees of free-
dom.

c) Let A <0and 0 < \/(B,AB) = o. If (B1 + pB2) (B + pB1) <O, then

0, p <0,
Au(X1,X2) = A(X1,X2) =
1, p>0.
If (Bi+pB2) (B +pPi) > 0, then
0 Cy, C > R R R
h(Xi1,X2) = 24(X1,X2) = P where ¢, 1= M
1, mm(c*7 ) <p, Ba+pBi

Proof. Propositions 6 and 5 state that tail dependence is a copula property and
therefore invariant under strictly increasing transformations of X; and X,. But if

; . (1AL 0
X ~GHy(A,a,B,6,1,A), the linear transformation ¥ = (0 f}@) (X —p) ob-

viously is strictly increasing in each component, and Theorem 1 c¢) implies that
Y ~GHs(1,6,B,8,0,A) with A =4, & = a, ﬁ:(m 0)[3 §=8,A= (lp)
and p := Ajp/+/A11 Az, Note that we here use the barred parameters defined in Re-

mark 2 because in general det(A) = 1 — p? < 1. As already pointed out in Remarks
2 and 3 on pages 17 and 18, these considerations remain also valid for all GH limit
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distributions. Hence we can and will always assume X ~ GHa(,a,f3,8,0,A) in

the following. The fact that A is supposed to be positive definite with det(A) 1 by

1 _AnAzzfAlzz_ 32
Andy — Andp =1-p% thus |p| <1.

a) If X ~ GHy(4,a,3,8,0,4) and 0 < /(B,AB) < a, then by Theorem 1 a)
the marginal distributions are X; ~ GH (A, (a* — (1 — p2)B3)2, By —|—p32,5,0)
and X, ~ GH(A, (a2 — (1 — p*)B})"/2, B>+ pPi.8,0). To simplify notations we
set & = (02— (1— p2)B2)V2, By i= By + pPo, and & 1= (a2 — (1 - p?)B2) 2,
B> := B, + pPi. then we obtain ot —ﬁlz =03 —[%22 =a?—(B,AB) > 0. Thus
the densities of .Z(X}) and .Z(Xz) both have semi-heavy tails (see Definition 2
and the remark thereafter), and Proposition 2 (or equivalently Corollary 1) implies
that the corresponding distribution functions F and F, fulfill the assumptions of
Lemma 2 b) with b1 =0;+ ﬁ, and by = &; — [3,, i=1,2. From this we conclude
that F;"!(q) ~ ¢;F, '(q) for ¢ | 0 as well as F;"!(q) ~ c,F, '(q) for ¢ 1 1 where

_ u+B _ P a3 —p2 o -
cli= a2+ﬁ? >0andc, := a? [32 > 0. Note that ¢;c, = P ﬁ? 1 and thus ¢, = cl

All this also holds in the VG limit case with § =0 because Theorem 1 a) still applies
there and the univariate VG marginal densities have semi-heavy tails, too (see p. 9).

Theorem 1 b) states that the conditional distribution of X; given X; = x; (where
here and in the following i, j € {1,2} as well as i # j) is given by P(X;| X; = x;) =

GH(A -1, a(1-p2)~12,B;,, /82 +x31/1—p?,px;), and part c) of the same the-

orem then yields

definition implies the inequality 0 <

X —px;j
1—p

=X

= GH(2—4,0/62 22, Bi /62 +22/1 - p2,1,0)

= G l‘](a’_i’a7ﬁla67p,x1)

52+x

Again, this also remains true in the VG limit case (see Remark 3 on p. 19). Let F;! ilj
denote the distribution function of GH;;; (A—3,0,B.,8,p,F i '(g)) and set

, FY(q)—pF;!
hij(q) = (1—p*) 72 = @) —pF; @ for g € (0,1),

82+ (F (q)°

then we have
lqig)lP(X,- <F '(q) ‘Xj :ij (9)) = hmF‘J( i|j(61))7

l;p;P(Xi>E"(Q)\Xj=FJ’ (2) = lim1— F (hi;(q))-
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Moreover, if a > || > 0, then GH (A, ra, rB,8, 1) —— gy for r — oo because
lim @612, rarp.6.0) (1) =

= im e (ra) ~ (rB)? ) 5 K, (8y/ra)? (B + i)
e (rOC)2 —(rB+ iu)2 K, (3 (roc)2 — (Vﬁ)z)

( a? — B2 )éK;L(r61/a2—([3+iﬁ‘)2) S

= lim ¢"* - =
r—reo Ol2f(ﬁ+7)2 K;L(ré\/m)
which implies that GHl."‘j (A— %, a,Bi,8,p,F ]fl (g)) converges weakly to the degen-

erate distribution &y if ¢ | 0 or ¢ 1 1. From the asymptotic relations of the quantile
functions F;"' () and F, ' (q) we further obtain

. 1 i—i . L,
limhy;(q) = (1=p*) "2 (p—c; ), and limhy;(q) = (1=p*) "3 (c ' =p)

(remember ¢, = cl_l), consequently

{O, c{_i >p,

. _ _ p—cj !
imP(X; <F ' (q)[X; = F; ' (q)) = Fey | ——= .
1, c; <p,

ql0

as well as

i~

. ¢, ' — 0, C;;j >p,
limP(X; > F '(q)|X; = ijl(q)) —1-F, <1p2> _ { -y
o l-p 1, ¢, <p,

and Proposition 6 b) finally implies that 4;(X;,X2) = 4,(X1,X2) = 0 if and only if
cl,cfl > p. Since ¢; > 0, the conditions are trivially met if p < 0. If 0 < p < 1,
then at most one of the quantities ¢; and cf' can be smaller than p (note that the
convergence to a well-defined limit cannot be assured if clj = p > 0, therefore we

exclude these possibilities in our considerations). This completes the proof of a).

c¢) Because Theorem 1 a) still applies if X ~ GH(A, a, B, 5,0,A), 1 <0,and 0 <
v/ (B,AB) = a, we have, using the notations from above, X; ~ GH (A, &,-,B,-, 9,0),
i = 1,2. However, in this case &7 — 33 =a’—+/(B,AB) = 0, hence both marginal
distributions are univariate GH limit distributions with A < 0 and & = | B,- | If 3i >0,
we conclude from equations (20), (21), and Proposition 2 that the tail behaviour
of the distribution function is given by Fi(y) ~ c;|y|*~'e 2%l for y — —co and
1 = Fi(y) ~ ca|y|* as y — oo where

2171 21

O &SR () = AleF 7T (A])
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1
Lemma 2 now states that ;! (g) ~ 10g< forglOand F;'(q) ~ ( lch) Ml forg 1 1.
If B; < 0, then we analogously obtain Fl Yg) ~ 7(%2) T as ¢ | 0 and Ffl(q) ~

— % as g 1T 1. Because the case ﬁ,- =B —i—pﬁ_j =01is ruled out by assumption, the

equality 0 = &7 —312 =a?—(1 _pz)sz — (Bi+pB;)? implies that a > /1 — p2|B;].

Thus, we can proceed along the same lines as in the proof of part a) and get
IimP(X; <F '(q)|X; =F'(q)) = F. (1- . )
lim P( @) |X; = F; (@) = Folimhy(9)

limP (X, > £ ()| X = £ () = 1~ Fe, (limhy (g))

if we again exclude the cases where /; j(g) — 0 for the same reasons as above.

Suppose f1, B, > 0, then F'(q) ~ ciF5 ' (q) with ¢; = 0‘2 = [52 >0asqgl0

_ _ . 1/|A 1/|A B
and F ' (q) ~ cuFy '(q) w1thcu:(%) /l |:(é) /l ‘:%:c[lfoqul.

Consequently, we again have

gﬁghi\j(q)=(1—p2>*%(p—c;""), limhy;(q) = (1-p*)

Bl—

(ci’=p)

and conclude, analogously as before, that A;(X;,X») = A,(X;,X) = 0 if and only
if cl,cfl >p. If 31, [§2 < 0, the tail behaviour of the quantile functions is just ex-
changed (¢; ~~ cf' and ¢, = cfl ~~ ¢1), hence the assertion remains also valid in this
case.

Finally, let §; > 0 and f3, < 0, then Fl(q) ~ 198l9) and Fy ' (g) ~ —(%)ﬁ as

204

q {0, thus hmqw E ; =0and

1
(1—p?)~2p, i—j=—1,
hmh,‘j( )=
10 —, l_.]:L

hence A;(X1,X) = 0if and only if p < 0. Further F; ' (¢) ~ ({2 )T\ and F, '(q) ~

—1
10g2(1 —q) for ¢ 1" 1, consequently hqul LU — 0 and

')
1
_(1 _p2)7§p7 i—j=1
hmhl\f( )= .
qt ®, 1= ]=— 17
which implies that also A, (X 1,X>) = 0if and only if p < 0. Trivially, all conclusions
remain true if B < 0 and B, > 0.

b) The proof of this part goes back to [20], see also [29, p._211]. If A <0 and
o =0, we can assume X ~ GH(1,0,0,6,0,A) =1,(A,6,0,A), and the marginal
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distributions are given by .Z(X;) = Z(X;) = GH(1,0,0,6,0) = #(1,6,0) ac-
cording to Theorem 1 a), hence we have F, '(q) = F, '(g) for all ¢ € (0,1) in
this case. By Theorem 1 b), the conditional distributions also coincide, that is,

PXo | X, =x) = P(X|| X, = x) =1(A,V8%+x2y/1—p?,px), and part c) of the
V1—p2 VE2+x2

same theorem implies
X2 = x)
=t(A—%,V/-21+1,0).

P V=2A4+1 Xo—px
V1—p2 V82 +x2

(Note that, in principle, the additional scaling factor v/—2A + 1 is not necessary, but

leads to the relation §% = —24 +1 = —2(A — %) of the parameters of the conditional

distribution which therewith becomes a classical Student’s t-distributiom with f =

—2A + 1 degrees of freedom.) If we set

h(q) — V-2 +1 szl(q) *pFlil(Q)
VIZP? 84 (R (@)

X, :x> :P<\/—2x+1 X; — px

forg € (0,1),

we get, using that F, ' (q) = F, '(q),

o vmmaia-p)  [Caaxna-p)

consequently

IC}E)IP(XZ <F, Yq) | X = Fl_l(Q)) = lqiﬂ)lP(X1 <F (g X, = F2_1(q))

. (=22 +1)(1—p)
= lqlfolF;(/lf%,\/fZ/l+l.0) (h(q)) = Ft()Lf%,\/—27L+1,0) (‘\/ T+p

and
. ~1 _ -l 1 -1 _ -l
limP (X > ;' (0) | X1 = F” (@) =limP(x > F (o) [ X2 = ()
= 1‘;{‘111 _Ft(lf%,\/72l+1,0) (h(a))

. (—2A+1)(1-p)
= T N1 V-2A+10) 1+p :

The symmetry relation F, ;5 /=537 ) (—x)=1 —Fo_12,v=37510) (x) and Pro-
position 6 b) now yield the desired result. O

_ The conditions ¢, > p and ¢, I'> p in Theorem 4 a) are trivially fulfilled if
Bi = B2, because then ¢, = ¢! = 1. This, in particular, includes the case B = 0
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which provides an alternative proof for the tail independence of symmetric GH dis-
tributions (apart from the t limit case). In general, however, it might seem to be a
little bit cumbersome to check these conditions. The following corollary provides a
simpler criterion for tail independence of GH distributions.

Corollary 4. Suppose that X ~ GHy(A, o, 3,0,1,A) and p := \/% > 0. Then
we have A)(X1,X2) = A(X1,X2) = 0 if either \/{(B,AB) < o and BB > 0O, or

< VB, AB) = o and P B> > 0.

Proof. According to Theorem 4 a) and ¢), we just have to show that the condi-
tions B; B, > 0 resp. > 0 imply c,,c; ! > p. Assume +/(B,AB) < « first. If both

B1,B2 > 0, then so are [31 VA Bl and Bz VA fB>. Since p > 0, we see from
the inequality 0 < a> — (B,AB) = a®> — B? —2pPiB. — B7 that B; < o, i = 1,2.
Therewith we obtain

@ —(L-pB B tpB /o= (T=pY)o? +phi+ B

Cx = =p,

052—(1—/32)5124-524-!7[31 othitpr

and an analogous estimate shows that also ¢; ! > p. If [)’1 <0 and ,Bz <0, we use
_\Va Bz Bl PBz
\/ - 1 —p2)B2—B—pBi

the fact that ¢! may alternatively be represented by ¢!

and similarly conclude that c,,c;! > p.
Now, let 0 < \/{(B,AB) = oc and note that the condition B;f; > 0 implies

- == _ Bi+pB  pBiteB _
(Bi+ pP2) (B + pPr) > 0.1t both B,y > 0. then ¢, = bt > Bpgi = p,

and ¢! > p follows analogously. If B1, B2 < 0, the same result is obtained by using

: _ =Bi-ph
the representation ¢, = m. O

An immediate consequence of the preceding corollary is that complete depen-
dence (A;(X1,X2) = A, (X1,X2) = 1) within bivariate GH distributions can only oc-
cur if the parameters f3; and f3, have opposite signs, and one might conjecture
that the conditions c,,c; ! > p are also always fulfilled in these cases such that a
two-dimensional GH distribution would be tail independent for almost any choice
of parameters. However, this is not true, and it is fairly easy to construct coun-
terexamples Take a = 4, B; =3, B = —2, and p = 0.3, then a® — (B,AB) =
a? —ﬁl 2pﬁ1[32—[32—66and

L = (1=p?)B + B+ PP
;' = ~0.286 < p.

Va2 —(1—p2)BZ+Bi+pp

The corresponding copula density is shown in Figure 1. In view of Theorem 4,
the densities displayed there represent all possible tail dependencies of GH dis-
tributions: N1G»(10,0,0.2,0,A) and NIG,(10, (T),O.Z,O,A_) are tail independent,
NIG, (4, (_32) ,0.2,0,A) is completely dependent, and £2(—2,2,0, A) lies in between.
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The fact that for GH distributions the coefficients of tail dependence can only
take the most extreme values 0 and 1 may surely be surprising at first glance, but
this phenomenon can also be observed in other distribution classes (making it pos-
sibly less astonishing). For example, [3] found a similar behaviour for the upper tail
dependence coefficient 4, (X, X,) of a skewed grouped t distribution. An alternative
derivation and discussion of their results can also be found in [21].

Thus, the dependence structure of multivariate GH distributions is fairly strict in
some sense since it neither allows independent components nor non-trivial values
of the tail dependence coefficients. A possible way to relax these restrictions is
to consider affine mappings of random vectors with independent GH distributed

components: If ¥ L Ax + 1, where € R?, A is a lower triangular d x d-matrix,
and X = (X1,...,X;)" with independent X; ~ GH(A;, &, B;,1,0), 1 < i < d, then
Y is said to have a multivariate affine GH distribution. Dependent on the choice
of A, Z(Y) can either possess independent margins or show upper and lower tail
dependence. [32] provide a thorough discussion of this model.

Finally, we want to remark that the dependence structure of factor models for
credit portfolios which have already been mentioned on p. 11 significantly differs
from that of multivariate distributions discussed above. Recall that the state variables
X; in general factor model are given by

Xi=vpM++/1-pZ, 0<p<l1, i=1,...,N, 41)
where M,Z,...,Zy are assumed to be independent and, in addition, the Z; are iden-

tically distributed (hence so are the X;). The corresponding distribution functions
are denoted by Fy, Fz, Fx and are usually supposed to be continuous and strictly
increasing on R. If M and the Z; are standard normal distributed (M, Z; ~ N(0, 1)),
then also the joint distribution of the X; is a multivariate normal distribution with
the associated implied copula. However, if we assume the factors M and Z; to fol-
low a GH distribution (M ~ GH(A,M, Oy, ﬁM, 5M7 [JM), Zi~ GH(}Lz, Oz, ﬁz, 52, ‘uz>
for all 1 <i < N), then the distribution of the random vector X = (Xj,...,Xy)" is
not a multivariate generalized hyperbolic one. This can easily deduced from the fact
that the X; in general are not GH distributed due the lack of stability under convo-
lutions of the GH class, whereas a multivariate GH distribution must always have
univariate GH margins according to Theorem 1 a). Consequently, the implied cop-
ula Cg, of the distribution Gx of the vector X also differs from the implied copula
of a multivariate GH distribution. The factor copula Cg, can be calculated by

Coy (ut,...,un) = Gx (Fy ' (w1),...,Fy ' (un))
:E[P(Xl <F*‘(u ) o Xy < Fy Nuy) M)

-/ H ( *ﬂ > Fir(dy) “2)

and admits tail dependence (4,(X;,X;),A;(X;,X;) >0, 1 <i# j <N) if and only
if the M is heavy tailed, that is, Fyy € Z, for some —co < p < 0 (see Defini-
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tion 4). This has been shown in [28]. Hence, we can conclude that factor models
with GH distributions can show tail dependence if and only if Fyy =¢(A,0,1) or
Fy=GH(A,a,xa,0,u).
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