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Abstract

A classical result of Slepian [32] for the normal distribution and extended by Das Gupta et al. [14] for elliptical dis-
tributions gives one-sided (lower orthant) comparison criteria for the distributions with respect to the (generalized)
correlations. Müller and Scarsini [24] established that the ordering conditions even characterize the stronger super-
modular ordering in the normal case. In the present paper, we extend this result to elliptical distributions. We also
derive a similar comparison result for the directionally convex ordering of elliptical distributions. As application, we
obtain several results on risk bounds in elliptical classes of risk models under restrictions on the correlations or on the
partial correlations. Furthermore, we obtain extensions and strengthenings of recent results on risk bounds for various
classes of partially specified risk factor models with elliptical dependence structure of the individual risks and the
common risk factor. The moderate dependence assumptions on this type of models allow flexible applications and, in
consequence, are relevant for improved risk bounds in comparison to the marginal based standard bounds.

Keywords: canonical vine, directionally convex ordering, elliptically contoured distributions, partial correlation, risk
bounds, supermodular ordering
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1. Introduction

In the first part of this paper, we extend and strengthen some basic stochastic ordering results for multivariate
normal distributions to the frame of elliptical distributions. As a consequence, we obtain in the second part of the
paper upper bounds in classes of elliptical distributions under restrictions on (partial) correlations as well as extensions
and strengthenings of several recent results on risk bounds in partially specified factor models (PSFM’s) with elliptical
specification of the dependence structure of the individual risks with a common risk variable.

A classical result of Slepian [32, Lemma 1.1] gives one-sided (lower orthant) comparison criteria of normal
distributions by the increase of the off-diagonal correlations. In the paper of Block and Sampson [11, Theorem 2.1 and
Corollary 2.3] it is stated that an increase of the off-diagonal correlations even implies the supermodular comparison
of these distributions. The argument in [11] is shown in Müller and Scarsini [24, Section 4] to be incomplete. In
their paper these authors give a complete proof of the strengthened comparison result for the normal case. In the
present paper, we use the ideas in these papers to characterize the supermodular ordering for the general elliptical
case. We also derive a related ordering criterion for the comparison of elliptical distributions w.r.t. (with respect to)
the directionally convex order.

The ordering results are used in Sections 3 and 4 of the paper to derive unique worst case distributions for several
relevant classes of risk models. These include models with elliptical dependence structure and additional bounds on
correlations and partial correlations corresponding to a C-vine structure. We also show that a generalization to D-
vine structures and, thus, to arbitrary regular vine structures is not possible. A second type of applications concerns
PSFM’s which do not need a full specification of the dependence structure and, thus, are a particular flexible tool for
applications. Under various constraints on the specifications, i.e., on the dependence structure of the individual risks
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with the risk factor, unique worst case distributions are determined. As consequence, these results imply relevant
improvements of standard (upper) risk bounds based only on marginal information on the risk vectors.

2. Supermodular and directionally convex order in classes of elliptical distributions

In this section, we characterize the supermodular ordering and the directionally convex ordering in classes of el-
liptical distributions with a fixed generator. For the directionally convex ordering, also an extension to the case of
different generators is given. Since comparison w.r.t. the supermodular ordering needs identical marginals, an exten-
sion of this form for the supermodular order is not possible.

For a function f : Rd → R , let ∆ε
i f (x) := f (x + εei) − f (x) be the difference operator, where ε > 0 and where ei ,

i = 1, . . . , d , denote the unit vectors w.r.t. the canonical base in Rd . Then, f is said to be supermodular, respectively,
directionally convex if ∆

εi
i ∆

ε j

i f ≥ 0 for all 1 ≤ i < j ≤ d , respectively, 1 ≤ i ≤ j ≤ d . For d-dimensional random
vectors ξ, ξ′ , the supermodular order ξ ≤sm ξ′ , respectively, the directionally convex order ξ ≤dcx ξ

′ is defined via
E f (ξ) ≤ E f (ξ′) for all supermodular, respectively, directionally convex functions f for which the expectations exist.
The lower orthant order ξ ≤lo ξ

′ is defined by the pointwise comparison of the corresponding distribution functions,
i.e. Fξ(x) ≤ Fξ′ (x) for all x ∈ Rd . Remember that the stochastic order ζ ≤st ζ

′ , respectively, the convex order ζ ≤cx ζ
′

for real-valued random variables ζ, ζ′ is defined via Eϕ(ζ) ≤ Eϕ(ζ′) for all increasing, respectively, convex functions
ϕ : R→ R for which the expectations exist.

For an overview of stochastic orderings, see Müller and Stoyan [26], Shaked and Shantikumar [31], and Rüschen-
dorf [28].

A d-dimensional random vector X has an elliptically contoured (or, shortened, elliptical) distribution with param-
eters µ , Σ , and generator φ , written

X ∼ ECd(µ,Σ, φ) ,

if µ ∈ Rd , Σ is a d × d positive semi-definite symmetric matrix, and if the characteristic function ϕX−µ of X − µ is a
function of the quadratic form t Σ t> , i.e., ϕX−µ(t) = φ(t Σ t>) .

For k = rank(Σ) , elliptical random vectors have a characterization by a stochastic representation of the form

X d
= µ + RkU(k)A , (1)

where U(k) is a random vector (of dimension k) which is uniformly distributed on the unit sphere in Rk , where the
radial variable Rk = Rk,φ is a non-negative random variable independent of U(k) , and where A is a deterministic k × d
matrix such that Σ = A>A , see Cambanis et al. [12].

A necessary and sufficient condition for such a representation is that φ ∈ Φ` for some ` ≥ k , where Φ` ⊂ Φk

denotes the class of functions ψ : [0,∞)→ R with

ψ(u) =

∫
[0,∞)

Ω`(r2u) dG`(r) (2)

for Ω` being the characteristic function of U(`) and G` the distribution function of R` , see Cambanis et al. [12,
Corollary 2]. The relationship between ψ ∈ Φ` and G` is one-to-one, see [12, Theorem 1].

Exactly in the case that ER2
k < ∞ , or equivalently that φ′(0) is finite, the covariance matrix exists and is propor-

tional to Σ (see Fang and Zhang [16, p. 67]).

A well-known property of elliptical distributions is that they are closed under marginalization where the marginals
inherit the elliptical generator (but not the radial variable), see, e.g., Fang and Zhang [16, Corollary 1 of Theorem
2.6.3] and Cambanis et al. [12, Corollary 2].

Further, elliptical distributions are closed under conditioning, see Cambanis et al. [12, Corollary 5]. In contrast to
the marginalization property, the generator is not necessarily inherited.
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2.1. Supermodular ordering of elliptical distributions

The lower orthant ordering of multivariate normal distributions with fixed univariate marginal distributions goes
back to Slepian [32, Lemma 1.1] (see also Tong [34]). An extension to elliptical distributions is established in Das
Gupta et al. [14, Theorem 5.1]. In the bivariate case, this is equivalent to the supermodular ordering.

The following special comparison result is given in Block and Sampson [11, Theorem 2.1 and Lemma 2.2], see
also Müller and Scarsini [24, Lemma 4.1]. The proof is based essentially on a conditioning argument leading to a
reduction to a comparison of two-dimensional elliptical distributions. We give a sketch of the proof since we make
use of some arguments of it later on in the paper.

Lemma 1. Let X ∼ ECd(µ,Σ, φ) and Y ∼ ECd(µ,Σ′, φ) with σi j ≤ σ
′
i j and σk` = σ′k` for all (k, `) < {(i, j), ( j, i)} for

some i , j . Then, X ≤sm Y .

Proof. Let X = (X1, . . . , Xd) and Y = (Y1, . . . ,Yd) . Assume without loss of generality that (i, j) = (1, 2) . In the first
case, assume that both Σ and Σ′ are positive definite matrices. Write

Σ =

(
Σ11 Σ12
Σ21 Σ22

)
(3)

where Σ11 is the two-dimensional (generalized) covariance matrix of (X1, X2) and Σ22 denotes the (d − 2)-dimensional
(generalized) covariance matrix of (X3, . . . , Xd) . Partition Σ′ and µ = (µ1, µ2) in the same way.

For z ∈ Rd−2 , let µz = µ1 + (z − µ2)Σ−1
22 Σ21 ,

Σ11.2 = Σ11 − Σ12Σ−1
22 Σ21 , and Σ′11.2 = Σ′11 − Σ′12Σ′−1

22 Σ′21 .

Then, for the conditional distributions holds

(X1, X2) | (X3, . . . , Xd) = z ∼ EC2(µz,Σ11.2, φq(z)) and (Y1,Y2) | (Y3, . . . ,Yd) = z ∼ EC2(µz,Σ
′
11.2, φq(z)) , (4)

for some generator φq(z) depending only on φ and q(z) = (z − µ2)Σ−1
22 (z − µ2)> , see Cambanis et al. [12, Corollary 5].

Thus, the conditional distribution depends on Σ11 and Σ′11 only through Σ11.2 and Σ′11.2 , respectively.
Since by assumption it holds componentwise that Σ11 ≤ Σ′11 , Σ12 = Σ′12 , Σ21 = Σ′21 and Σ22 = Σ′22 , it follows that

Σ11.2 ≤ Σ′11.2 componentwise with equality for the diagonal elements. Hence, the characterization of the supermodular
ordering in the bivariate case implies

(X1, X2) | (X3, . . . , Xd) = z ≤sm (Y1,Y2) | (Y3, . . . ,Yd) = z

for almost all z . Then, the concatenation property of the supermodular ordering yields X | (X3, . . . , Xd) = z ≤sm

Y | (Y3, . . . ,Yd) = z for almost all z . Since (X3, . . . , Xd) d
= (Y3, . . . ,Yd) , the statement follows from the closure of the

supermodular ordering under mixtures, see Shaked and Shanthikumar [30, Theorem 2.4.].
In the second case assume that at least one of Σ and Σ′ is positive semi-definite and not positive definite. Denote

by I the identity matrix. Then, the matrices Σ + 1
n I and Σ′ + 1

n I are positive definite for all n ∈ N . According to
the first case holds for Xn ∼ ECd(µ,Σ + 1

n I, φ) and Yn ∼ ECd(µ,Σ′ + 1
n I, φ) that Xn ≤sm Yn for all n ∈ N . Then, the

statement follows from the closure of the supermodular ordering under weak convergence (see Müller and Scarsini
[24, Theorem 3.5]).

In the following theorem, we establish that the supermodular ordering of elliptical distributions is characterized
by the componentwise ordering of the off-diagonal elements of the (generalized) covariance matrix. This result is
the positive answer to the question formulated in Landsman and Tsanakas [21, Remark 2] whether the supermodular
ordering results for multivariate normal distributions (see Müller [22, Theorem 11] and for Kotz-type distributions
(see Ding and Zhang [15, Theorem 3.11]) can be extended to elliptical distributions of arbitrary dimension.
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Theorem 1 (≤sm-ordering of elliptical distributions).
Let X ∼ ECd(µ,Σ, φ) and Y ∼ ECd(µ′,Σ′, φ′) with Σ = (σi j)1≤i, j≤d , Σ′ = (σ′i j)1≤i, j≤d . Then, the following statements
are equivalent:

(i) X ≤sm Y ,

(ii) µ = µ′ , φ = φ′ , σii = σ′ii f.a. 1 ≤ i ≤ d , and σi j ≤ σ
′
i j for all i , j .

(iii) X and Y have the same univariate marginals and σi j ≤ σ
′
i j f.a. i, j .

Proof. (i) =⇒ (iii): The supermodular ordering is a pure dependence ordering. Thus, the univariate marginal distribu-
tions must be equal and, in particular, σii = σ′ii for all i . Since both the supermodular ordering and elliptical distribu-
tions are closed under marginalization, σi j ≤ σ

′
i j follows from (Xi, X j) ≤lo (Yi,Y j) with Landsman and Tsanakas [21,

Corollary 2].
(iii) =⇒ (ii): This follows from the fact that elliptical distributions are closed under marginalization and the marginals
inherit the elliptical generator.

Assume (ii). Consider two cases. In the first case let us assume that both matrices Σ and Σ′ are positive definite. In
the same way as in the proofs of Das Gupta et al. [14, Theorem 5.1] and Müller and Scarsini [24, Theorem 4.2.] there
exists a finite sequence Σ = Σ1 ≤ · · · ≤ Σk = Σ′ (componentwise) of positive semi-definite matrices such that Σ`+1 is
obtained from Σ` by increasing exactly one off-diagonal entry. Hence, statement (i) follows from Lemma 1 and from
the transitivity of the supermodular ordering.

In the second case assume that at least one of Σ and Σ′ is positive semi-definite and not positive definite. Then,
the statement follows from the first part and a similar approximation argument as in the second part of the proof of
Lemma 1.

Remark 1. The supermodular ordering result in Theorem 1 is established independently in a recent paper by Yin
[35, Theorem 3.4] submitted to arXiv on Oct 16, 2019. For the proof, this author extends the integral representation
argument in Müller [22, Theorem 11] in the normal case. We remark that our paper is based on the dissertation of the
first author from Apr 09, 2019, see Ansari [3, Theorem 5.2], where Theorem 1 is given in explicit form.

2.2. Directionally convex ordering of elliptical distributions
In this section, we derive an ordering result for the directionally convex ordering of elliptical distributions. The

following lemma is based on a conditioning argument similar to that used in the proof of Lemma 1.

Lemma 2. Let X ∼ ECd(µ,Σ, φ) and Y ∼ ECd(µ,Σ′, φ) be integrable with σi j = σ′i j for all (i, j) , (1, 1) and
σ11 ≤ σ

′
11 . Then, X ≤dcx Y .

Proof. With a decomposition of Σ and Σ′ that is similar to (3) with Σ11 = (σ11) and Σ′11 = (σ′11) one-dimensional it
holds that

X1 | (X2, . . . , Xd) = z ∼ EC2(µz,Σ11.2, φq(z)) , Y1 | (Y2, . . . ,Yd) = z ∼ EC2(µz,Σ
′
11.2, φq(z)) ,

for Σ11.2 = σ11 − Σ12Σ−1
22 Σ21 , Σ′11.2 = σ′11 − Σ′12Σ′−1

22 Σ′21 and for some µz and φq(z) similar to (4). Since σ11 ≤ σ′11 it
holds that Σ11.2 ≤ Σ′11.2 and, thus,

X1 | (X2, . . . , Xd) = z ≤cx Y1 | (Y2, . . . ,Yd) = z

for all z , see Landsman and Tsanakas [21, Corollary 1]. Since the convex ordering and the directionally convex
ordering coincide in the one-dimensional case, we obtain with the concatenation property of the directionally convex
ordering that

X | (X2, . . . , Xd) = z ≤dcx Y | (Y2, . . . ,Yd) = z

for all z . Then, the closure of the directionally convex ordering under mixtures implies X ≤dcx Y using that (X2, . . . , Xd)
d
= (Y2, . . . ,Yd) , see Müller and Stoyan [26, Theorem 3.12.6].
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The following result provides ordering criteria for the directionally convex ordering in the class of elliptical dis-
tributions with a fixed generator, see also Yin [35, Theorem 3.6]. Our proof is based on Lemma 2 and on the charac-
terization of the supermodular ordering in Theorem 1.

Theorem 2 (≤dcx-ordering of elliptical distributions for fixed generator).
Let X ∼ ECd(µ,Σ, φ) and Y ∼ ECd(µ′,Σ′, φ) with Σ = (σi j)1≤i, j≤d and Σ′ = (σ′i j)1≤i, j≤d be integrable. Then,

(i) µ = µ′ and σi j ≤ σ
′
i j f.a. i, j imply X ≤dcx Y .

(ii) If X ≤dcx Y , then µ = µ′ . If additionally X and Y are square-integrable, then σi j ≤ σ
′
i j f.a. i, j holds true.

Proof. (i): Let ξ ∼ ECd(µ,Σ′′, φ) where Σ′′ = (σ′′i j)1≤i, j≤d is given by σ′′ii = σ′ii for all i and σ′′i j = σi j for all i , j .
Since componentwise increasing the diagonal elements does not affect the positive semi-definiteness, Σ′′ is positive
semi-definite. Thus, Lemma 2 implies X ≤dcx ξ . Due to Theorem 1, it holds that ξ ≤sm Y and, thus, X ≤dcx Y .
(ii): Choosing the functions f (x) = ±xi leads to µ = µ′ . In the square-integrable case, σi j ≤ σ′i j follows with
f (x) = (xi − µi)(x j − µ j) .

Remark 2. It is so far not clear whether the assumption of square-integrability in Theorem 2(ii) can be omitted. This
question also concerns related statements in the literature.

As a consequence of the above theorem, an increase of the radial variable w.r.t. the (univariate) stochastic order
implies a directionally convex ordering result of the corresponding random vectors.

Corollary 1 (≤dcx-ordering of elliptical distributions for different generators).
Let X ∼ ECd(µ,Σ, φ) and Y ∼ ECd(µ,Σ′, φ′) with Σ = (σi j)1≤i, j≤d and Σ′ = (σ′i j)1≤i, j≤d be integrable. Assume that
σi j ≤ σ

′
i j , σ

′
i j ≥ 0 f.a. i, j and φ ∈ Φk for k = rank(Σ′) .

If the radial variables Rk,φ and Rk,φ′ satisfy Rk,φ ≤st Rk,φ′ , then it follows that X ≤dcx Y .

Proof. Consider X′ ∼ ECd(µ,Σ′, φ) , which is well-defined due to the assumption that φ ∈ Φk , see (1) and (2).
Then, Theorem 2 implies that X ≤dcx X′ . To show that X′ ≤dcx Y , let F and G be the distribution function of Rk,φ

and Rk,φ′ , respectively. Then, Rk,φ ≤st Rk,φ′ is equivalent to F−1(V) ≤ G−1(V) almost surely for some uniformly on
(0, 1) distributed random variable V , see, e.g., Shaked and Shantikumar [31, Theorem 1.A.1]. Consider the stochastic
representations

X′ = F−1(V)U(k)A and Y = G−1(V)U(k)A

as in (1) with U(k) independent of V . Then, the conditional distributions (X′ |V = v) ∼ ECd(µ, (F−1(v))2Σ′,Ωk) and
(Y |V = v) ∼ ECd(µ, (G−1(v))2Σ′,Ωk) are elliptically distributed with generator being the characteristic function Ωk of
the k-dimensional spherical distribution. Thus, we obtain from Theorem 2 that

(X′ |V = v) ≤dcx (Y |V = v)

for almost all v , using that all of F−1(v),G−1(v), σ′i j are non-negative. Hence, the statement follows from the closure
of the directionally convex order under mixtures, see Müller [23].

3. Risk bounds in classes of elliptical models

As application of the ordering results in Section 2, we determine greatest elements w.r.t. ≤sm and ≤dcx , respec-
tively, in some classes of elliptical models. In risk applications, greatest elements, if they exist, correspond to worst
case distributions in these models. Note that greatest elements w.r.t. ≤sm and ≤dcx are always unique because these
orderings are partial orders and, thus, antisymmetric.

In typical applications in risk analysis, the risk vector is not completely specified but is given, e.g., by all elliptical
models with certain bounds on the correlations or on the marginal distributions. As an important consequence of the
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supermodular and directionally convex ordering results, we obtain bounds of the aggregated risk for these models.
Note that

(Xi)i ≤sm (Yi)i or (Xi)i ≤dcx (Yi)i =⇒
∑

i

Xi ≤cx

∑
i

Yi =⇒ Ψ

∑
i

Xi

 ≤ Ψ

∑
i

Yi


for any law-invariant, convex, Fatou-continuous risk measure Ψ on an atomless probability space, see, e.g., Bäuerle
and Müller [8, Theorem 4.3]. While the directionally convex ordering allows a comparison of random vectors with
different marginal distributions, the (tighter) supermodular ordering requires equality of the marginal distributions, i.e.,
Xi

d
= Yi for all i . A useful property of the supermodular ordering is its invariance under increasing transformations of

the components, i.e., if (Xi)i ≤sm (Yi)i and hi : R → R is increasing, 1 ≤ i ≤ d , then (hi(Xi))i ≤sm (hi(Yi))i . Thus, an
ordering result for X and Y implies ordering results w.r.t. transformed marginals. Note that the directionally convex
ordering is invariant w.r.t. increasing convex transformations hi of the components.

These invariance properties imply that the ≤sm- and ≤dcx-ordering results are applicable to models with an ellipti-
cal dependence structure and reasonable general marginals.

As first type of applications, we consider elliptical risk modelsM1 determined by upper bounds on the covariances
of the form

M1 =
{
X ∼ ECd(µ,Σ, φ) |Σ ≤ Σu componentwise

}
,

where Σu = (σu
i j) ∈ R

d×d is a positive semi-definite, symmetric matrix and φ ∈ Φd is an elliptical generator of the class
Φd such that the corresponding radial variable R is integrable. It is thus assumed that the (generalized) covariances
σi j of Σ are upper bounded by the covariances σu

i j of the matrix Σu .
As consequence of Theorem 2, we directly obtain an identification of a unique worst case distribution in model

M1 w.r.t. the directionally convex order.

Corollary 2 (≤dcx-maximum ofM1).
Let Y ∼ ECd(µ,Σu, φ) . Then, it holds that

(i) Y ∈ M1 , and

(ii) X ≤dcx Y for all X ∈ M1 .

As a second type of applications, we determine the worst case distribution w.r.t. the supermodular ordering for an
elliptical model with given upper bounds on the (generalized) partial correlations corresponding to a canonical vine
(C-vine) structure. Since the supermodular ordering is a pure dependence ordering and invariant under increasing
transformations, our assumptions concern only the dependence structure and can also be applied to other marginal
distributions. C-vine models are an important subclass of regular vine copula models which are a tool to model gen-
eral dependencies, see, e.g., Kurowicka and Joe [20] and Czado [13].

For `, `′ ∈ N0 with ` ≤ `′ , denote by ` : `′ the vector of indices (`, . . . , `′) . If ` > `′ , set ` : `′ = ∅ . Let

(σi j,1:(i−1))1≤i< j≤d ∈ [−1, 1]
d(d−1)

2 be a given
(

d
2

)
-dimensional vector. For j ∈ {3, . . . , d} and i ∈ {2, . . . , j − 1} , define

iteratively σi j,1:k for k ∈ {i − 1, . . . , 1} by

σi j,1:(k−1) := σki,1:(k−1)σk j,1:(k−1) + σi j,1:k

√
1 − σ2

ki,1:(k−1)

√
1 − σ2

k j,1:(k−1) . (5)

Then, define the matrix Σ = (σi j)1≤i, j≤d by σii = 1 for all i and by σi j = σ ji = σi j,1:0 for i < j .

LetMd
cor be the set of correlation matrices, i.e., the set of positive semi-definite, symmetric d × d matrices with

all diagonal elements equal to 1 . By Proposition 1, Σ is a correlation matrix and, further, for any correlation matrix

Σ′ = (σ′i j) ∈ M
d
cor , there exists a decomposition (σi j,1:(i−1))1≤i< j≤d ∈ [−1, 1]

d(d−1)
2 such that the recursive formula

(5) leads to the matrix Σ′ , i.e., σi j = σ′i j for all i, j . If Σ is the correlation matrix of a square-integrable elliptically
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distributed random vector (Y1, . . . ,Yd) , then σi j,1:(i−1) is the partial correlation of Yi and Y j given Y1, . . . ,Yi−1 which
coincides with the conditional correlation, see Baba et al. [7, Example 2].

For φ ∈ Φd and bi ∈ [0, 1] , 1 ≤ i < d , consider the elliptical model

M2 := {X ∼ ECd(0,Σ, φ) |Σ ∈ Md
cor : |σi j,1:(i−1)| ≤ bi f.a. i < j} (6)

with bounded (generalized) partial correlations corresponding to a canonical vine structure. Note that we do not pose
any integrability assumption. Further, the univariate marginals are fixed and thus M2 is a pure dependence model.
We aim to determine a greatest element ofM2 in supermodular ordering. This also yields unique worst case distribu-
tions in models with transformed univariate marginal distributions using the invariance property of the supermodular
ordering under increasing transformations.

The following result shows that the (generalized) partial correlations (σi j,1:(i−1))1≤i< j≤d are algebraically indepen-
dent and determine a unique correlation matrix. More precisely, the set of positive definite correlation matrices can
be characterized in terms of (generalized) partial correlations that correspond to a canonical vine (or C-vine) which is
a star-shaped regular vine, see, e.g., Kurowicka and Cooke [18] and Aas et al. [1] for definitions.

Proposition 1.

(i) There is a one-to-one correspondence between the set of d × d positive definite correlation matrices and the set

of (generalized) partial correlations (σi j,1:(i−1))1≤i< j≤d ∈ (−1, 1)
d(d−1)

2 corresponding to a C-vine.

(ii) The (generalized) partial correlations (σi j,1:(i−1))1≤i< j≤d ∈ [−1, 1]
d(d−1)

2 determine a correlation matrix uniquely.

(iii) If Σ ∈ Md
cor is not of full rank, the corresponding (generalized) partial correlations (σi j,1:(i−1))1≤i< j≤d are not

necessarily uniquely determined.

Proof. (i): The (generalized) partial correlations correspond to the structure of a canonical vine. Thus, the statement
follows from Bedford and Cooke [9, Corollary 7.5].
Statement (ii) is a consequence of (i) and (5).
(iii): The determinant of Σ is given by

det(Σ) =

d−1∏
i=1

d∏
j=i+1

(1 − σ2
i j,1:(i−1)) ,

see Kurowicka and Cooke [19, Theorem 4.5]. Thus, the determinant vanishes if and only if there exist 1 ≤ i < j ≤ d
such that σi j,1:(i−1) ∈ {−1, 1} . In this case, (5) implies that the (generalized) partial correlations σ` j,1:(`−1) , i < ` < j ,
are not uniquely determined.

For Σ = (σi j) and Σ′ = (σ′i j) , the following proposition gives some elementary ordering results w.r.t. the (gener-
alized) partial correlations based on formula (5). To keep the notation simple, we formulate it in the case that k = 1 ,
i = 2 and j = 3 .

Proposition 2 (Ordering partial correlations).
For the (generalized) partial correlations the following ordering properties hold true:

(i) If σ1` = σ′1` for ` ∈ {2, 3} , then σ23,1 ≤ σ
′
23,1 implies σ23 ≤ σ

′
23 .

(ii) If σ23,1 = σ′23,1 , then 0 ≤ |σ1` | ≤ σ
′
12 = σ′13 for ` ∈ {2, 3} implies σ23 ≤ σ

′
23 .

(iii) If σ23,1 = σ′23,1 ≤ 0 , then 0 ≤ σ1` ≤ σ
′
1` for ` ∈ {2, 3} implies σ23 ≤ σ

′
23 .
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Proof. Statement (i) follows from the partial correlation formula

σ23 = σ12σ13 + σ23,1

√
1 − σ2

12

√
1 − σ2

13 =: f (σ23,1, σ12, σ13) , (7)

see (5). The partial derivative ∂2 f =
∂ f
∂σ12

of f w.r.t. the second variable is given by

∂2 f (σ23,1, σ12, σ13) = σ13 −

σ23,1

√
1 − σ2

13 σ12√
1 − σ2

12

. (8)

Then, statement (ii) follows from

f (a, c, d) ≤ f (a, d, d) ≤ f (a, e, e)

f.a. a ∈ [−1, 1] , and 0 ≤ |c| ≤ d ≤ e ≤ 1 where the first inequality holds true because

|ac| ≤ d =⇒ ac
√

1 − d2 ≤ d
√

1 − c2 =⇒ ∂2 f (a, c, d) ≥ 0 .

The second inequality is fulfilled since for ga(s) := f (a, s, s) holds g′a(s) = 2(1 − a)s ≥ 0 f.a. a ≤ 1 and s ≥ 0 .
Statement (iii) is a consequence of (8).

For the bounds (bi)i on the (generalized) partial correlations in modelM2 , define the numbers a1, . . . , ad−1 ∈ [0, 1]
iteratively by

ai,i−1 := bi , i ∈ {1, . . . , d − 1} ,

ai,k−1 := a2
k,k−1 + ai,k(1 − a2

k,k−1) , k ∈ {i − 1, . . . , 1} , (9)

ai := ai,0 , i ∈ {1, . . . , d − 1} .

Denote by δi j the Kronecker delta and by i ∧ j the minimum of i and j . According to the following result, there
exists a (unique) worst case distribution in modelM2 w.r.t. the supermodular ordering which is given as follows.

Theorem 3 (Bounded partial correlations).
Let Y ∼ ECd(0,Σu, φ) be elliptically distributed with Σu = (σu

i j)1≤i, j≤d given by σu
ii = 1 for all i and σu

i j = ai∧ j for all
i , j . Then, it holds that

(i) Y ∈ M2 , and

(ii) X ≤sm Y for all X ∈ M2 .

Proof. Applying the partial correlation formula (5) for 2 ≤ i < j ≤ d inductively over k ∈ {i − 1, . . . , 1} yields to

σi j,1:(k−1) = σki,1:(k−1) σk j,1:(k−1) + σi j,1:k

√
1 − σ2

ki,1:(k−1)

√
1 − σ2

k j,1:(k−1)

≤ σki,1:(k−1) σk j,1:(k−1) + ai,k

√
1 − σ2

ki,1:(k−1)

√
1 − σ2

k j,1:(k−1) ≤ a2
k,k−1 + ai,k · (1 − a2

k,k−1) = ai,k−1

using Proposition 2 (i), (ii) and (9). This implies with σ1, j ≤ b1 = a1 for j ∈ {2, . . . , d} that σi j ≤ ai for all
1 ≤ i < j ≤ d . Since σi j = σ ji for all i , j , it follows that σi j ≤ ai∧ j for all i , j . Choosing (σi j,1:(i−1))1≤i< j≤d = bi

leads to σi j = ai for all 1 ≤ i < j ≤ d . This defines a correlation matrix (see Proposition 1 (ii)) which coincides with
Σu .
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Remark 3.

(a) If b1 = 1 in (6), then by construction ai = 1 for all 1 ≤ i < d . This leads to σu
i j = 1 f.a. 1 ≤ i, j ≤ d , and, hence,

Y d
= (Xc

1, . . . , X
c
d) is the standard comonotonic upper bound for X = (X1, . . . , Xd) w.r.t. the supermodular ordering,

i.e., there is no improvement of the standard bounds. This coincides with the fact that a1 = 1 yields σu
1i = 1

(which means Cor(Y1,Yi) = 1 in the square-integrable case) f.a. i , and thus Y = (Y1, . . . ,Yd) is comonotonic. In
this case, the (generalized) correlations (σ1 j)1≤ j≤d determine the correlation matrix uniquely and the (generalized)
partial correlations (σi j,1:i)2≤i< j≤d are not uniquely determined, see Proposition 1(iii).

More generally, if bi = 1 for some i ∈ {1, . . . , d − 1} in (6) then a j = 1 for all i ≤ j < d . This implies that
(Yi, . . . ,Yd) is comonotonic and (Y | Y1:(i−1) = y) is comonotonic conditionally on y ∈ Ri−1 . The case b2 = 1 is a
special case of Ansari and Rüschendorf [6, Theorem 2.3] in the context of partially specified internal risk factor
models.

(b) If bi = 0 for all 1 ≤ i < d , then ai = 0 for all i and thus Σ = Σu = (δi j)1≤i, j≤d , i.e. X d
= Y has uncorrelated

components. Note that the components are only independent in the case of a multivariate normal distribution, see
Cambanis et al. [12, Section 5(d)].

(c) The bounds (bi)i in (6) on the (generalized) (partial) correlations σi j|1:(i−1) lead to a positive semi-definite matrix
Σu defined in Theorem 3 which implies improved risk bounds. Note that, in general, upper bounds on the uncon-
ditional (generalized) correlations (σi j)i j do not specify a positive semi-definite matrix and, thus, it is not clear
whether a worst case distribution exists and how to obtain good bounds in this case.

The following example illustrates Theorem 3.

Example 1. Assume that X ∼ EC4(0,Σ, φ) where Σ = (σi j)1≤i, j≤4 ∈ M
4
cor with (generalized) partial correlations

corresponding to the C-vine in Fig. 1(a). Assume that

|σ12|, |σ13|, |σ14| ≤ 0.5 = b1 = a1,0 , |σ23,1|, |σ24,1| ≤ 0.6 = b2 = a2,1 , |σ34,12| ≤ 0.4 = b3 = a3,2 . (10)

Then, Theorem 3 leads to

a1 = a1,0 = 0.5 , a2 = a2,0 = a2
1,0 + a2,1(1 − a2

1,0) = 0.7 ,

a3,1 = a2
2,1 + a3,2(1 − a2

2,1) = 0.616 , a3 = a3,0 = a2
1,0 + a3,1(1 − a2

1,0) = 0.712 .

Hence, for Y ∼ EC4(0,Σu, φ) with

Σu =


1 0.5 0.5 0.5

0.5 1 0.7 0.7
0.5 0.7 1 0.712
0.5 0.7 0.712 1

 ,
holds X ≤sm Y , i.e., EC4(0,Σu, φ) is the unique worst case distribution in the class of elliptical models with bounds on
the partial correlations as in (10).

In the previous example, we have illustrated Theorem 3 which shows that a (componentwise) greatest element in
the class of correlation matrices with bounded partial correlations corresponding to a C-vine structure exists and can
be determined by the recursive formula (5). In the following example, we show that this result cannot be generalized
to regular vine structures. A componentwise greatest element in the class of correlation matrices with bounded partial
correlations corresponding to a regular vine that is not a C-vine does not necessarily exist. Since every regular vine
that is not a C-vine contains a sub-vine that is a D-vine on 4 variables, we consider without loss of generality a D-vine
structure on 4 variables.

Example 2. Consider the D-vine in Fig. 1(b). Then, a correlation matrix Σ = (σi j)1≤i≤ j≤4 ∈ M
d
cor is uniquely deter-

mined by the (partial) correlations σ12, σ23, σ34, σ13,2, σ24,3, σ14,23 ∈ [−1, 1] , see Bedford and Cooke [9, Corollary
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(a) 1 2 3 4(b)3 1 4

2

σ12 σ23 σ34σ13 σ14

σ12
σ13,2 σ24,3

σ14,23

σ23,1 σ24,1

σ34,12

Fig. 1. A complete partial correlation C-vine specification (a) and a complete partial correlation D-vine specification (b) on 4 variables.

7.5]. From Cambanis et al. [12, Corollary 5], we obtain by some elementary but tedious calculations for σ23 , ±1
that

σ14 =
1

1 − σ2
23

(σ12σ24 + σ13σ34 − σ13σ23σ24 − σ12σ23σ34) (11)

+
1

1 − σ2
23

σ14,23

√
1 − σ2

23 − σ
2
12 − σ

2
13 + 2σ12σ13σ23

√
1 − σ2

23 − σ
2
24 − σ

2
34 + 2σ23σ24σ34 ,

where

σ13 = σ12σ23 + σ13,2

√
1 − σ2

12

√
1 − σ2

23 ,

σ24 = σ23σ34 + σ24,3

√
1 − σ2

23

√
1 − σ2

34 .

(12)

For the class of bounded partial correlations (σi j,(i+1):( j−1))1≤i< j≤4 corresponding to a D-vine structure such that

|σi j,(i+1):( j−1)| ≤ b j−i , 1 ≤ i < j ≤ 4 , (13)

for b j−i ∈ [0, 1] , we show that σ14 is not necessarily maximum if it is a function of the bounds b j−i .

Consider for b1 =
√

2
2 , b2 = 1

2 , and b3 = 1 the class

S =
{
Σ = (σi j)1≤i, j≤4 ∈ M

4
cor : |σi j,(i+1):( j−1)| ≤ b j−i , 1 ≤ i < j ≤ 4

}
(14)

of correlation matrices defined by the partial correlations (σi j,(i+1):( j−1))1≤i< j≤4 which are bounded by ±b j−i . Choose
the matrices Σ′ = (σ′i j),Σ

∗ = (σ∗i j) ∈ S defined by

σ′12 = σ′34 = σ∗12 = σ∗23 = σ∗34 = b1 , σ′23 =
1
2
,

σ′13,2 = σ′24,3 = σ∗13,2 = σ∗24,3 = b2 ,

σ′14,23 = σ∗14,23 = b3 .

Then, Σ∗ only depends on the (partial) correlation bounds bi , 1 ≤ i ≤ 3 . It holds that

σ′13 = σ′24 =
1
4

√
2 +

1
8

√
6 ≈ 0.6597396 , σ∗13 = σ∗24 =

3
4
,

σ′14 =
9
16

+
1
4

√
3 ≈ 0.9955127 , σ∗14 =

3
8

+
7

16

√
2 ≈ 0.9937184 ,

and, thus, σ′13 < σ∗13 and σ′24 < σ∗24 , but σ′14 > σ∗14 . Hence, contrary to the C-vine case in (6) and (10), a compo-
nentwise greatest element in the class S of correlation matrices with bounded partial correlations corresponding to a
D-vine structure does not exist. While the correlations σ13 and σ24 in (12) are maximum given the constraints (13)
if and only if σ12 = σ23 = σ34 = b1 and σ13,2 = σ24,3 = b2 (see Proposition 2), the correlation σ14 in (11) is not
maximum for the maximal choice in (13), i.e., for σ12 = σ23 = σ34 = b1 , σ13,2 = σ24,3 = b2 , and σ14,23 = b3 , even
though, by (11), σ14 is monotone in σ14,23 . As a consequence, a greatest element in S does not exist.
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For the set of correlation matrices with bounded partial correlations specifying a C-vine structure (like in Theorem
3), a unique correlation matrix, such that

E f (X) , X ∼ ECd(µ,Σ, φ) , (15)

is maximized over all such correlation matrices simultaneously for all supermodular functions f , exists and can be
determined. In the above example, we have shown that this is, in general, not possible for non-C-vine structures.
However, for a fixed supermodular function f , a maximization of (15) w.r.t. such a constrained set of correlation
matrices reduces to a convex optimization problem as follows.

Remark 4. By an argument in Giovagnoli and Romanazzi [17, Lemma 3 and proof of Proposition 3], the map of a
correlation matrix R to the matrix R∗ of partial correlations is matrix concave. As a consequence of the quasi-convexity
of the absolute value |τ| of the correlation τ , therefore, the set S in (14) is convex. The maximal elements of S are
determined by maximizing E f (X) over X ∈ ECd(µ,Σ, φ) , Σ ∈ S ,which due to the convexity of S can be characterized
as a solution of a dual problem. Alternatively, this maximization problem can be solved numerically by maximizing
over a bounded set of parameters. This remark also extends to general regular vine structures.

4. Worst case distributions in partially specified factor models

The ordering results in Section 3 make use of the dependence structure of a full elliptical model which may be
not easy to justify in applications. This is the reason for the introduction of partially specified factor models (PSFM)
(X,Z) given by a risk vector X = (X1, . . . , Xd)> and a real-valued risk factor Z such that Xi = fi(Z, εi) , 1 ≤ i ≤ d ,
where (ε1, . . . , εd) are idiosyncratic risks independent of Z . The dependence structure among the (εi)i is not specified
in contrast to the usual independence assumption in factor models. Here, only the distribution of (Xi,Z) is specified,
1 ≤ i ≤ d . This simplified assumption makes the PSFM a very flexible and general type of models compared to the
fully specified models.

Partially specified risk factor models (PSFM’s) are of considerable practical relevance for the reduction of (upper)
risk bounds because they improve the comonotonic upper bound w.r.t. ≤sm obtained for marginal models where only
the univariate marginal distributions are specified (see Bernard et al. [10]). In PSFM’s, the upper bound w.r.t. ≤sm is
given by a conditionally comonotonic vector. Similar results for lower bounds and, in particular, minimum elements
w.r.t. ≤sm are in general only available for the bivariate case.

In the following, we only assume that the dependence of (Xi,Z) is elliptical. In the first part of this section, we
analyze risk bounds w.r.t. the supermodular ordering where the dependence structure of (Xi,Z) is fixed. In the second
part of this section, we derive directionally convex ordering results where we allow the copula of (Xi,Z) to come from
some sub-families of elliptical distributions and the marginal distributions to come from some sets of distribution
functions with upper bounds in convex order.

4.1. Bounds w.r.t. the supermodular ordering
For Σ =

( 1 ρ
ρ 1

)
, ρ ∈ [−1, 1] , we abbreviate the bivariate distribution EC2(0,Σ, φ) by EC2(0, ρ, φ) . For φ ∈ Φ2 and

for (generalized) correlations ρi ∈ [−1, 1] , 1 ≤ i ≤ d , consider the class of PSFM’s

M
f
3 := {(X,Z) | (Xi,Z) ∼ EC2(0, ρi, φ) , 1 ≤ i ≤ d} (16)

with bivariate elliptical specifications of each component Xi and the common risk factor Z ∼ EC1(0, 1, φ) .
We derive ≤sm-ordering results for the upper bounds (w.r.t. ≤sm) of the risk vector class

M3 := {X | ∃Z such that (X,Z) ∈ M f
3 } ,

i.e., M3 is the projection of M f
3 on the set of risk vectors. Note that the assumptions in model M3 are quite mild.

They in fact only concern the specification of fixed marginal distributions and the copula of (Xi,Z) . Bounds forM3
directly lead by the transformation invariance to bounds for the class of PSFM’s

M
′ f
3 :=

{
(Y1, . . . ,Yd,Z′) | ∃(X,Z) ∈ M f

3 with Yi = hi(Xi) , Z′ = g(Z)
}

11



for increasing functions hi and a strictly increasing function g , and to bounds for the corresponding risk vector class

M′3 = {Y = (Y1, . . . ,Yd) | ∃Z such that (Y,Z) ∈ M′ f3 } .

As consequence, ordering results forM3 directly imply corresponding ordering results for the classM′3 with general
marginals.

Define M : [−1, 1]2 → [−1, 1] by

M(a, b) := ab +
√

1 − a2
√

1 − b2 .

Let Xc
i,z := F−1

Xi |Z=z(U) with U ∼ U(0, 1) independent of Z . Then, the conditionally comonotonic random vector Xc
Z =

(Xc
1,Z , . . . , X

c
d,Z) has the (uniquely determined) worst case distribution in the PSFMM3 in (16) w.r.t. the supermodular

ordering as follows, see Ansari and Rüschendorf [4, Theorem 2].

Proposition 3. For the conditionally comonotonic vector Xc
Z it holds that

(i) Xc
Z ∈ M3 and

(ii) X ≤sm Xc
Z for all X ∈ M3 .

Further, (Xc
Z) ∼ ECd(0,Σ, φ) is elliptically distributed where Σ = (σi j) is given by

σi j =

1 for i = j ,
M(ρi, ρ j) for i , j .

As a consequence of Theorem 1, we obtain the following result which characterizes the supermodular comparison
of the worst case scenarios in models M3 = M3((ρi)i) w.r.t. the elliptical specifications (ρi)i . It strengthens the
lower orthant ordering result in classes of elliptical distributions in Ansari and Rüschendorf [4, Proposition 4] to the
supermodular ordering.

Theorem 4. Let (Xi,Z) ∼ EC2(0, ρi, φ) , (Yi,Z) ∼ EC2(0, ρ′i , φ) , 1 ≤ i ≤ d . Then, for conditionally comonotonic
random vectors Xc

Z and Yc
Z with these specifications holds

Xc
Z ≤sm Yc

Z ⇐⇒ M(ρi, ρ j) ≤ M(ρ′i , ρ
′
j) , ∀i , j . (17)

Remark 5.

(a) It can easily be verified that M(a, b) = 1 if and only if a = b . Thus, ρi = ρ j for all i , j yields Xc
Z

d
= Xc , where

Xc = (F−1
Xi

(U))1≤i≤d is comonotonic. Thus, in all other cases the risk bounds in the PSFM improve on the pure
marginal model.

(b) A sufficient condition for the ordering on the right hand side in (17) is

ρ1 ≷ ρ′1 ≷ ρ2 ≷ · · · ≷ ρd and ρ′i = ρi for all 2 ≤ i ≤ d .

This is a special case of the sign-change ordering condition for upper products of bivariate copulas in the elliptical
setting, see Ansari and Rüschendorf [5, Corollary 3.11]. In particular, also

ρ1 ≷ · · · ≷ ρk ≷ ρ′k ≷ ρ′k+1 ≷ ρk+1 ≷ · · · ≷ ρd ,

ρ′1 = · · · = ρ′k ≷ ρ′k+1 = · · · = ρd
(18)

for some k ∈ {1, . . . , d − 1} implies the ordering on the right hand side in (17).
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(c) For d = 2 , a sharp lower bound of M3 w.r.t. the supermodular ordering is given by the conditionally counter-
monotonic vector

(F−1
X1 |Z(U), F−1

X2 |Z(1 − U)) .

For an ordering criterion on lower bounds similar to Theorem 4, see Ansari and Rüschendorf [5, Remark 6]. As
a slight extension, for d = 3 and ρ1 = 1 , a sharp lower bound ofM3 w.r.t. the supermodular ordering is given by
(Z, F−1

X1 |Z
(U), F−1

X2 |Z
(1 − U)) .

(d) If φ ∈ Φk for some k ≥ 2 and if Gk(0) = 0 for Gk defined in (2), then X ∼ ECd(µ,Σ, φ) has continuous univariate
marginal distribution functions independent of µ and Σ . This is a consequence of the absolute continuity on (0,∞)
of the radial variable corresponding to the univariate marginals of X , see Cambanis et al. [12, Corollary 2]. In
this case, solutions ofM′3 can be obtained and ordered for any fixed marginal distributions.

4.2. Bounds w.r.t. the directionally convex ordering

In the following, we extend the setting of the PSFMM3 in (16) to partial specification sets and to the consideration
of different elliptical generators and different marginal distributions. More precisely, we consider an elliptical PSFM
where the partial specifications are allowed to come from elliptical distributions with different generators and with a
bound on the correlations. Further, we consider a PSFM where the univariate marginals are allowed to come from
some large classes of distributions with upper bounds in convex order.

Let −1 ≤ ρ1 < ρ2 ≤ 1 such that M(ρ1, ρ2) ≥ 0 . For p ∈ {1, . . . , d − 1} and bi > 0 , 1 ≤ i ≤ d + 1 , consider the set

Sρ1,ρ2 =
{
Σ = (σi j) ∈ Md+1

cor |σi,d+1 ≤ ρ1 < ρ2 ≤ σ j,d+1 for 1 ≤ i ≤ p < j ≤ d
}

of correlation matrices with a constraint on the (generalized) correlation between the i-th component and the (d +1)-st
by an upper bound ρ1 if i ≤ p , and by a lower bound ρ2 if i > p .

For a mean vector µ ∈ Rd+1 and an elliptical generator φ ∈ Φ2 , consider the class of PSFM’s

M
f
4 =

{
(X,Z) ∼ ECd+1(µ,Σ, ψ) |Σ ∈ Sρ1,ρ2 , ψ ∈ Φrank(Σ) ,R2,ψ ≤st R2,φ

}
of elliptical distributions with partial dependence specifications of (Xi,Z) given by Σ ∈ Sρ1,ρ2 and with generator ψ
whose radial variable R2,ψ is upper bounded w.r.t. the stochastic order by the radial variable R2,φ corresponding to φ .
Note that the risk factor Z is a real-valued random variable.

Again, the corresponding risk vector class is denoted by

M4 =
{
X | ∃Z such that (X,Z) ∈ M f

4

}
. (19)

In dependence on the choice of φ , this class comprises, e.g., multivariate normal and multivariate t-distributions with
upper bounded, respectively, lower bounded correlations of (Xi,Z) . A worst case distribution ofM4 w.r.t. the direc-
tionally convex ordering immediately yields to worst case distributions of models with increasing convex transformed
marginal distributions.

To allow are more flexible modeling of the univariate marginal distributions, we also consider the following model.
Let η ∈ Φ2 be the generator of a bivariate elliptical distribution that fulfills the positive dependence condition (21)
with ρ = M(ρ1, ρ2). Consider the families

Cρ1,η = {C ∈ C2 |C is a copula of EC2(0, r, η) , r ≤ ρ1} ,

Cρ2,η = {C ∈ C2 |C is a copula of EC2(0, r, η) , r ≥ ρ2}

of bivariate elliptical copulas with generator η and a correlation that is upper bounded by ρ1 , respectively, lower
bounded by ρ2 .

For fixed distribution functions Fi ∈ F
1 , define the sets

Fi := {F | F ≤cx Fi}
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of marginal distribution functions that are upper bounded by Fi in convex order, 1 ≤ i ≤ d . Consider the class of
PSFM’s

M
f
5 =

{
(X,Z) | FXi ∈ Fi ,CX` ,Z ∈ C

ρ1,η ,CX j,Z ∈ Cρ2,η , 1 ≤ ` ≤ p < j ≤ d
}

and the related risk vector class

M5 =
{
X | ∃Z such that (X,Z) ∈ M f

5

}
(20)

with marginal specification sets Fi and elliptical dependence specification sets Cρ1,η and Cρ2,η .
We aim to determine a greatest element ofM4 andM5 , respectively, w.r.t. the directionally convex order. Note

that a greatest w.r.t. the supermodular ordering cannot be obtained because the elements in these classes do not all
have identical univariate marginal distribution.

To obtain a greatest element of M5 w.r.t. ≤dcx , we need the following positive dependence notion. Let ξ =

(ξ1, . . . , ξd) be a d-dimensional random vector. Then ξ is said to be conditionally increasing (CI) if for all i ∈ {1, . . . , d} ,
ξi ↑st ξJ for all J ⊂ {1, . . . , d} \ {i} , i.e., E[ f (ξi) | ξ j = x j , j ∈ J] is increasing in x j for all j ∈ J , J ⊂ {1, . . . , d} \ {i} and
for all non-decreasing functions f for which the expectation exists.

For a bivariate elliptical vector ζ ∼ EC2(0, ρ, ψ) , ρ ∈ (−1, 1) , with absolute continuous radial variable R2,ψ , the
density of ζ is of the form

h(z) =
1√

1 − ρ2
g
z  1

1−ρ2
ρ

1−ρ2
ρ

1−ρ2
1

1−ρ2

 z>
 , z ∈ R2 ,

where g is a scale function that is uniquely determined by the distribution of R2,ψ . A sufficient CI-condition for
bivariate elliptical distributions is given as follows.

Lemma 3 (CI-criterion for bivariate elliptical distributions).
Let X ∼ EC2(µ, ρ, η) , ρ ∈ [0, 1) , be a bivariate elliptical random vector with a scale function g such that β(t) =

log(g(t)) is twice differentiable. If

β′′(t) = 0 whenever β′(t) = 0 and if −
ρ

1 + ρ
≤ inf

t∈T

t β′′(t)
β′(t)

≤ sup
t∈T

t β′′(t)
β′(t)

≤
ρ

1 − ρ
, (21)

where T = {t ∈ R+ : β′(t) < 0} , then X is conditionally increasing.

Proof. The statement follows from the characterization of likelihood ration dependence in Abdous et al. [2, Proposi-
tion 1.2].

Remark 6. Condition (21) is fulfilled for ρ = 0 only in the case that X is normally distributed. More generally,
if ρ = 0 and X ∼ EC2(µ, ρ, η) is CI, then X is normally distributed, see Abdous et al. [2, Proposition 1.3]. For
normal random vectors, CI is characterized by the property that the inverse correlation function is an M-matrix (see
Rüschendorf [27]). The above stated result implies that an extension of this characterization to elliptical distributions
given in Tibiletti [33, Lemma 4.1] and Rüschendorf and Witting [29, Proposition 3.3] does not hold.

For the comparison of conditionally comonotonic elliptical risk vectors in the models M4 and M5 , define the
matrix Σ = (σi j)1≤i, j≤d+1 by

σi j =


1 if 1 ≤ i, j ≤ p or p < i, j ≤ d or i = j = d + 1 ,
M(ρ1, ρ2) if 1 ≤ i ≤ p < j ≤ d or 1 ≤ j ≤ p < i ≤ d ,
ρ1 if 1 ≤ i ≤ p , j = d + 1 , or 1 ≤ j ≤ p , i = d + 1 ,
ρ2 if p < i ≤ d , j = d + 1 , or p < j ≤ d , i = d + 1 .

(22)

Then, the (uniquely determined) worst case distribution for the modelM4 in (19), respectively,M5 in (20) w.r.t.
the directionally convex ordering is given as follows.
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Theorem 5 (Directionally convex maximization).
For (X,Z) = (X1, . . . , Xd,Z) ∼ ECd+1(µ,Σ, φ) , it holds that

(i) X ∈ M4 , and

(ii) ξ ≤dcx X for all ξ ∈ M4 .

For (X′,Z′) = (X′1, . . . , X
′
d,Z

′) ∈ ECd+1(0,Σ, η) , define Y = (F−1
i (FX′i (X

′
i )))1≤i≤d . Then, it holds that

(iii) Y ∈ M5 , and

(iv) ξ ≤dcx Y for all ξ ∈ M5 .

Proof. (i): By construction, Σ has rank 2 . Hence, φ ∈ Φrank(Σ) is fulfilled. Further, it holds that σi,d+1 = ρ1 and
σ j,d+1 = ρ2 for 1 ≤ i ≤ p < j ≤ d . Hence, X ∈ M4 .

(ii): Let (ξ,Z′′) ∼ ECd(µ, S , ψ) be an element of M f
4 . Consider an elliptical vector (ζ, ζd+1) ∼ ECd+1(µ,Σ, ψ) .

Then, it holds that

ξ ≤sm ξc
Z′′ ≤sm ζ ≤dcx X , (23)

where the first inequality follows from Proposition 3. The second inequality is a consequence of Theorem 1 because
S d,d ≤ Σd,d componentwise, where S d,d and Σd,d denote the restriction of the matrix S and Σ , respectively, to the first d
rows and columns. The last equality follows from Corollary 1 using that R2,ψ ≤st R2,φ and M(ρ1, ρ2) ≥ 0 . Altogether,
this implies ξ ≤dcx X .

(iii): Since η fulfills condition (21), X′ has continuous marginal distribution functions, cp. Remark 5(d). Thus,
FX′i (X

′
i ) ∼ U(0, 1) is uniformly distributed on (0, 1) which implies that Yi ∼ Fi ∈ Fi . Further, it holds that

(X′i ,Z
′) ∼ EC2(0, ρ1, η) and (X′j,Z

′) ∼ EC2(0, ρ2, η)

for 1 ≤ i ≤ p < j ≤ d . This implies that CYi,Z′ ∈ C
ρ1 and CY j,Z′ ∈ C

ρ2 for 1 ≤ i ≤ p < j ≤ d . Thus, (Y,Z′) ∈ M f
5 .

(iv): For (ζ,Z′) ∈ ECd+1(0, S , η) , S ∈ Sρ1,ρ2 , Proposition 3 and Theorem 1 imply that

ζ ≤sm ζc
Z′ ≤sm X′ . (24)

By assumption on the generator η , the bivariate vector (X′i , X
′
j) fulfills condition (21) with ρ = M(ρ1, ρ2) for 1 ≤ i ≤

p < j ≤ d . Thus, Lemma 3 implies that (X′i , X
′
j) is conditionally increasing. Since rank(Σ) = 2 , also the d-variate

vector X′ is conditionally increasing. As a consequence of (24), the invariance of the supermodular ordering under
increasing transformations implies for (ξ,Z′′) ∈ M f

5 , that

ξ ≤sm ξc
Z′′ ≤sm F−1

ξi
(FX′i (X

′
i )) ≤dcx Y , (25)

where the last inequality holds true since Fξi ≤cx Fi using that the copula of X′ is CI, see Müller and Scarsini [25,
Theorem 4.5]. Altogether, this implies ξ ≤dcx Y .

Remark 7.

(a) In the class M4 , distributions from different elliptical generators are allowed. The marginal distributions are
assumed to be elliptical in order to apply Corollary 1 for the last inequality in (23). Using the transformation
invariance by increasing convex functions of the components, more general marginal classes can be assumed for
this result to hold true. In the classM5 , the marginal distributions are allowed to come from general classes Fi of
distributions. The elliptical generator for the bivariateg dependence constraints is fixed in order to apply Theorem
1 for the transformed marginals in (25).

(b) By definition of the classesM4 andM5 , the copulas Cξi,Z′′ of the components of the risk vector ξ = (ξ1, . . . , ξd)>

with the risk factor Z′′ are from the same elliptical generator ψ . Only in this case, the copula Cξc
Z′′

of the con-
ditionally comonotonic vector is elliptical (also with generator ψ). For different generators, the conditionally
comonotonic random vector is no longer elliptical and, thus, Theorem 1 cannot be applied in the proof of Theo-
rem 5.
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Conclusion

In the present paper we derive sufficient criteria and characterizations of the supermodular and of the directionally
convex order for the class of elliptical distributions. The results generalize corresponding characterizations for multi-
variate normal distributions. The proofs are based on conditioning arguments allowing a reduction of the problem to
the two- and one-dimensional case.

The ordering results are used in the second part of the paper to derive worst case distributions for several relevant
classes of risk models. These include models with elliptical dependence structure and additional bounds on (partial)
correlations corresponding to a C-vine structure. We show that these results cannot be generalized to D-vines and,
thus, not to arbitrary regular vine structures. A second type of applications concerns partially specified factor models
(PSFM), which do not need a full specification of the dependence structure and, thus, are a particular flexible tool for
applications. Under various constraints on the specifications, i.e., on the dependence structure of the individual risks
with the common risk factor, worst case distributions are determined. As a consequence, these results imply relevant
improvements of standard risk bounds based only on marginal information on the risk vectors.
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